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Premiére Partie
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Introduction aux équations aux dérivées partielles

A différence des équations différentielles ordinaires, pour les
équations aux dérivées partielles, dont la forme générale est
ou du oMu oMu o0Mu
Oxy ’ ’ 8Xd7 ’ 3X1m7 (’9)(1'”_18)(27 ’ 8X‘T

¢(X17"'7Xd7 ):0’

on ne connaft pas de méthode applicable a tous les types
d’équations.

Ainsi, nous sommes obligés d'étudier les équations aux dérivées
partielles avec des méthodes différentes selon le type d'équations.
Rappelons donc la

classification des équations aux dérivées partielles

en des types [ici nous nous limitons aux équations aux dérivées
partielles du premier et second ordre].
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Classification des équations aux dérivées partielles

Equations du premier ordre :
Equations de transport O;u+v-Vu=20

Equations du second ordre :

Equations du type elliptique
Exemple : I'éqaution de Poisson Au=1"f

Equations du type hyperbolique
Exemple : I'éqaution des ondes 0?u = Au

Equations du type parabolique
Exemple : I'éqaution de la chaleur 9,u = Au

Il'y a aussi des équations du second ordre qui ne sont pas clas-
sifiées dans ces trois types, par exemple : I'éq. de Schoredinger
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Equation de transport - méthode des caractéristiques

Commencons par |'équation de transport.

Pour simplifier, considérons I'équation de transport dans [0, co[ xRY
Oru(t,x) + v(t,x) - Vu(t,x) = f(t,x, u(t, x)), (1)

avec la condition initiale
u(0, x) = up(x) x € RY, (2)

ou up(x) est une fonction donnée.

Dans I'équation (1) et dans la suite nous utilisons la notation
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Méthode des caractéristiques - rappel de la dérivée totale

Le probleme de Cauchy (1)—(2) peut étre résolu par
la méthode des caractéristiques.

Pour le voir, rappelons d’abord la dérivée totale :

Si v :[0,00[ — R est continue et u : [0,00[ xRY — R est de
classe C1, alors la dérivée totale de u(t,(t)) est

S u(7(1)) = lim = [u(t + b2 (e + b)) — (e 7(1))] =

d
d
= atu(t,X)’X:,y(t) + ;8Xiu(t7x)‘x_,y(t)dt7i(t) =

= deu(t, (1)) + S(1) - Vu(t. (1))
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Caractéristiques

Considérons I'équation différentielle ordinaire

0 =veA(D),  t20, (1) e B,

avec la condition initiale
7(0) = x(© ¢ RA.

En faisant varier la donnée initiale x(%) dans R? (et en supposant
que v(t, x) jouit d'une régularité suffisante pour résoudre cette
équation), on aura une famille de courbes

A1) =1 Die),  xO R

Ces courbes peuvent étre obtenues aussi par I'équation intégrale

t
H(x©): 1) = xO) 4 / v(s,7(x©): 5)ds.
0
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Résolution de |'équation de transport

En substituant Z~(x(®; t) = v(t,v(x(©, t)) dans
0ru(t,1(x; ) + S (< 1) - Va4 ),
on obtient
Aeu(t, v(x@; £))+v(t, v(x@; 1))-Vu(t, y(x@; 1)) = %u(t, ~(x@; 1)).

Donc, en résolvant les famille des équations différentielles
ordinaires

%u(t,’y(x(o); t)) = F(t,7(x@; 1), u(t,7(x@; 1)), t>0, xO cRY,
on résout I'équation de transport
Oru(t, x) + v(t,x) - Vu(t,x) = f(t, x, u(t, x))
avec la condition initiale
u(0,x©) = u(0,v(x(?;0)) = up(x®).
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Equation de transport - synthése

Si on suppose les conditions qui garantissent la définition des
caractéristiques v(x(©); t), on peut transformer I'équation de
transport

Oru(t,x) + v(t,x) - Vu(t,x) = f(t,x, u(t, x))

en une famille d’équations différentielles ordinaires
d
E“(RV(X(O); t)) = F(£,7(x; 1), u(t,4(x*; 1))).
Ainsi, en résolvant les équations différentielles ordinaires avec la
condition initiale
u(O,X(O)) = uo(x(o)),

on obtiendra la solution de I'équation de transport avec cette
condition initiale.

Si le domaine Q n'est pas RY, il suffit de poser la condition d’entrée sur la
partie de la frontiére 9Q ot v - n < 0 (ici n est la normale extérieure sur
0RQ) et, en définissant la caractéristique de cette partie, de transformer
I'’équation de transport en des équations différentielles ordinaires.
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Pour les équations aux dérivées partielles du second ordre

Depuis I'époque de D’Alembert, Euler, etc. jusqu'au début du XX¢
siécle, on cherchait la solution explicite de I'équation. Mais avec
I'arrivée de I'Analyse fonctionnelle, en particulier celle des espaces
de Sobolev, on a eu la tendance de considérer une possible solution
comme un élément d’un espace fonctionnel. La norme d’une
fonction est un nombre réel; de la norme on ne peut pas
reconstruire la fonction, qui est un élément de R (s'il s’agit d'une
fonction f : Q — R). Ainsi la considération d’une fonction comme
un élément d’un espace fonctionnel a fait perdre I'infinité
d’information.

Alors je tente de récupérer les informations des solutions
fondamentales explicites, convaincu que ces informations récupérées
nous donnent la clé pour ouvrir une nouvelle perspective pour les
équations aux dérivées partielles.
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Fonction harmonique pour |'équation de Poisson

Considérons I'équation de Poisson

Au(x) = f(x), x€QCRY d>2.

On pose
1
== log |x ourd =2
U(X):{z,, Bl p o
T @y e Pourd =3
ol |S91| est la superficie de la surface de la sphére de rayon 1.

Alors la fonction
w(x) = [ Ulc=)Fy)dy

vérifie I'équation Aug = f dans Q.
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Fonction harmonique pour |'équation de Poisson [suite]

SiQ =R, d>3, et [, |f(x)]dx < oo, alors up(x) vérifie, outre
I'équation de Poisson, la condition

up(x) — 0 pour |x| — oo.

- Exemple d'application :

pour d = 3, le potentiel gravitationnel engendré par la masse
distribuée avec la densité o(x) dans I'espace.

Si Q est different de RY, en particulier dans le cas ol Q est borné,
pour résoudre un probléme concret, il faut corriger la fonction
up(x) en tenant compte de la condition aux limites.

Pour cet argument, voir par exemple [Mikhairov,1976,/1980].
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Equation des ondes - solution de D'Alembert

Comme il est bien connu, la solution du probléme de Cauchy
Ofu(t,x) = dzu(t,x),  u(0,x) =p(x), eu(t,x)|,_o = ¥(x),
est donnée par

o(x+t)+o(x—t) 1 [

u(t.x) = 5 vy w6

Cette solution est valable pour tout t € R et pour tout x € R.

Pour I'équation des ondes 0?u = Au dans RY 3 x, il y une formule
similaire, mais plus compliquée et ca ne donne pas immédiatement
la solution explicite du probléme de Cauchy. Pour les détails, voir
[Evance,2010].
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Equation de la chaleur - a partir de Fourier

L’équation de la chaleur 0;u = Au a été formulée par Fourier dans
[Fourier,1822] et sa solution a été donnée dans le méme ouvrage
(dans lequel il a introduit aussi la série de Fourier pour décrire la
variation de la distribution de la température sur un segment [a, b]).

THEORIE

ANALYTIQUE

DE LA CHALEUR,

Pan M. FOURIER.

A PARIS,

CHEZ FIRMIN DIDOT, PERE ET FILS,
nuiss voun TDRATLIQUE

1822
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Solution fondamentale de I'équation de la chaleur

Soit

_ 1 [x[? d
@(t,x)—mm_ﬁ)dpexp<—4tﬁ>, t>0,X€R (3)

Soit ug(x) une fonction définie sur RY a valeurs réelles continue et
bornée.
Alors la fonction

u(t, x) = y O(t,x — y)uo(y)dy (4)
vérifie I'équation
Oru(t,x) = kAu(t, x) t>0, xcR?

et la relation

tILnO1+ u(t, x) = up(x).
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Solution fondamentale de |'équation de la chaleur [suite]

Si en outre f(t, x) est une fonction définie sur [0, co[ xRY & valeurs
réelles continue et bornée sur [0,7] x R? pour tout 7 > 0, alors la
fonction

u(t, x) = y O(t,x — y)uo(y)dy+

t
+ [ [ ete—sx-piydds ()
0 JRrd
vérifie I’équation
Oru(t, x) = kAu(t,x) + f(t,x) t>0, xeR?
et la relation

tanOL u(t,x) = up(x).
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petite remarque

La solution u(t, x) donnée dans (4) ou (5) est bien définie sur R si
up(x) et f(t,x) sont continues et bornées, mais u(t, x) (ni

|u(t, x)|P pour quelconque p > 1) n’est pas nécessairement
intégrable.

Donc u(t,-) n’appartient en général pas a un espace de Sobolev (ni
a un espace de Lebesgue).

Alors les espaces fonctionnels adéquats sont
CK(RY) - espace des fonctions k-fois continiiment dérivables avec

la norme
lull ey = > sup [DZu(t,x)],
‘alSkXGRd
olel d
DY = ———— la] = Zaj
x 8xf‘1~-8x§“d’ = ’
et

Ckto(R9), 0 < o < 1, — espace de Holder.
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Continuité holdérienne - notations

Notations :
Q‘r — [0, 7—] X Rd
k+o) k+o (&£=)
16 = [elV07 + [l &, (6)
ou
(k+o )
P16 = > D2l
2r+|v|=k
(k-ﬂ) r v (k U*”*M)
[eld, " = Z [D:DX¢l: 4. 2
0<HT”—r—‘2ﬂ<1
t — t
W) = sup |#(2, %) 905 Yl
() (E0)EQrxty XY
o’ t7 - 9
[‘P]EQ) = sup (t ) QOU(,S X)‘,
N (6X),(s,X)EQy, ts |t — s
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Continuité holdérienne - estimation

L'estimation fondamentale est
1) Pour la solution u(t, x) du probléme

Oru(t, x) — kAu(t,x) = f(t,x) pour t >0, x € RY,

u(0,x) =0 pour x € R?
on a
[l < Clflg”™ 7
avec 0 < a < 1 et une constante C.
(voir [Ladyzhenskaya-Solonnikov-Ural’tseva,1967/1968])

La démonstration de (7) se base sur I'estimation de

By, O /Rd O(t — s,x — y)f(s,y)dyds|,_ u

—6)(1-8)9- iy e(t - 57 X — y)f(S,y)dde|X:X(2)
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Continuité holdérienne - estimation [suite]

2) Pour la solution u(t,x) du probleme
Oru(t, x) — kAu(t,x) =0 per t>0, x € RY,

u(0,x) = up(x) per x € R9

ona k+2 k+2
[u] 7 < Cluo) ) (8)

avec une constante C.

3) Pour la solution u(t,x) du probleme
Oru(t, x) — kAu(t,x) = f(t,x), u(0,x) = up(x)

on a
[u](Qk:r2+0') S C([UO](k+2+O') +[f](ok7—+0')) (9)

x,Rd
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Pour résoudre |'équation plus générale dans I'espace de

Holder

Pour construire la solution (locale) de I'équation
Oru(t,x) — kAu(t,x) = f(t,x) — v(t,x) - Vu(t,x)
on utilise I'estimation du type

IV VU g o < Cor U iy g 0<e<1

=% (R,)’

(R-)

et I'équation
0:U— kAU = —v-VU.

Littérature :
[Ladyzhenskaya-Solonnikov-Ural’tseva,1967/1968]
[Krylov,1997], etc...
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La fonction ©(t, x) et le mouvement brownien

Rappelons que pour xk = % la fonction ©(t, x) est la densité du
mouvement brownien standard B(t) au temps t > 0 :

/D O(t, x)dx = P({B(t) € D}) = Elxp(B(1))]

pour tout sous-domaine D de RY.

Cette relation nous permet d'exprimer la solution u(t, x) donnée
dans (4) sous la forme

uftx) = [ O(tx = y)un(y)dy = Elun(x — ()]
comme il s'agissait de I'espérance mathématique de ug(-) calculée

par un mouvement brownien qui part de x au temps t et va dans la
direction inverse du temps jusqu'au temps initial.
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Utilisation de |'équation stochastique

La derniére remarque suggére qu'il y a une relation entre la solution
de I'équation du type parabolique et le processus stochastique.

En effet, Kolmogorov observe cette relation [Kolmogorov,1931]
(méme avant sa propre fondation de la théorie axiomatique du
calcul des probabilités, publiée en 1933) :

aujourd’hui appelée équation de Kolmogorov inverse, qui donne la
représentation stochastique de la solution d'une équation
parabolique.

Pour définir la représentation stochastique de la solution d’une
équation parabolique, on définit d'abord la famille de processus
stochastiques & x(s) ((t,x) € [0,5[ xR9) par I'équation
stochastique

s

Eonl(s) = x + /tsa(r,ft,x(r))dH / b(r, £ex(r))dW(r)  (10)

pourt <s <.
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Représentation stochastique - théoréme

Alors on a le

Théoréme. Soit 1(x) une fonction définie sur RY continue,
bornée ayant les dérivées premiéres et secondes continues et
bornées par rapport 3 xq, ..., Xq4. Si on pose

u(t,x) = E(&:.«(3)), (t,x) € [0,3] x RY,

la fonction u(t, x) satisfait a I'équation

u(t, x) +Z tx) u(tx)

32
+ Z bi(t, ) bj(t,x) 5 o u(t,x) =0, (11)
ij,k=1
et @ la condition finale lim,_ .- u(t,x) = ¥(x).
Pour la démonstration, voir par exemple
[Guikhman-Skorokhod,1977,/1980].
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Représentation stochastique pour la diffusion tendant vers 0

La méthode de la représentation stochastique nous permet de faire
tendre le coefficient de diffusion vers 0. En effet, I'équation

d
ull(t, x) +Za, —u[":] (t,x)+
-1

2
+e Z bir(x > M(t,x):O (12)

ij,k=1

correspond a I'équation stochastique
i) =x+ [ ateblinar+= [ seblenawn. ()
t t

Dans (13) on peut faire tendre & vers 0, de sorte que ul?l(t, x) tend
vers la solution de I'équation sans diffusion quand ¢ tend vers 0.
Toutefois les résultats sont exprimés dans le langage de la théorie
des probabilités ([Freidlin-Wentzell,2012]).
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Lorsque le coefficient de diffusion tend vers 0

Nous nous intéressons particuliérement au comportement de la
solution de I'équation de transport-diffusion (équation du type
parabolique)

Ootu+v-Vu=rAu+f

lorsque le coefficient de diffusion x tend vers 0,

car la convergence de la solution de |'équation de
transport-diffusion vers la solution de I'équation de transport

Oru~+v-Vu=+f

est I'exigence du fait que I'équation de transport-diffusion
représente le phénoméne de transport et diffusion.
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dans |'espace de Sobolev lorsque le coefficient x tend vers 0

L’équation du type parabolique dans un domaine borné D de R est
souvent étudiée dans le cadre des espaces de Sobolev et pour cela
on commence généralement par multiplier scalairement |'équation

Oru(t, x) + v(t,x) - Vu(t,x) — kAu(t,x) = f(t,x)

(avec la condition u = 0 sur dD) par u(t, x) elle-méme, ce qui nous
donne I'inégalité

1d K
5 gl Wiy + 5 IVu(t, Wiy <
vt )0 ez
< P e ey + () oy

(Cp étant le coefficient de I'inégalité de Poincaré).

Mais il est clair que cette inégalité perd de plus en plus son
efficacité lorsque « tend vers 0.
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Par la convergence treés faible

Certes, dans cette orientation de I'esprit, il y a aussi quelque
possibilité :
Si on formule une solution généralisée trés faible par

/ / u 8,0 4+ V - (V) + kAP dxdt =
0 Q

/ /fgodxdt—/ (0, x)dx,

on peut faire tendre k vers 0 (c-a-d kAp — 0), ce qui donne une
possibilité de convergence de ul®! sans ses dérivées.

Mais ici f ne doit pas dépendre de u

et il est difficile d’en déduire une convergence dans une topologie
plus forte [on aura besoin de convergence dans une topologie plus
forte, si on veut considérer les équations non-linéaires].
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Une remarque simple

Terminons cette premiére partie par une remarque sur un cas tres
simple de convergence de la solution de I'équation de
transport-diffusion vers celle de I'équation de transport.

Supposons que la fonction v = v(t) dépend seulement de t
et considérons |'équation

Oru(t, x) + v(t) - Vu(t,x) = kAu(t,x) + f(t,x,u(t,x)). (x)

Introduisons le changement de variables
t
£=x —/ v(s)ds.
0
Alors on a
Oru(t, x) = Oru(t, x(t,x)) =

d d
:dt(txtf ;3utx )0exi(t, &) =
= Oru(t,§) — v(t,€) - Viu(t, x(t,)).
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Une remarque simple [suite]

Et, comme V,u(t,x) = Veu(t,§), Axu(t,x) = Aeu(t, ),
I'équation (x) se réduit a I'équation de la chaleur

Oru(t,§) = kAu(t, §) + f(t,€, u(t, £)). ()

La solution u(t,&) est donnée par (5), qui, si f dépend de v,
devient une équation intégrale, et on voit aisément que, lorsque &
tend vers 0, la solution de I'équation (xx) devient la solution
ull(t, €) de I'équation intégrale (si £ dépend de u)
0 ' 0
ull(t, €) = () +/ f(s, &, ul)(s,€))ds.
0
En revenant aux coordonnées (t, x), on voit que cette solution est
la solution de I'équation de transport

Oru(t,x) + v(t) - Vu(t,x) = f(t,x, u(t, x)).
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Conclusion de la Premiére Partie

Certes, si dans I'équation (x) la fonction v(t,x) dépend de x € RY,
le raisonnement de cette remarque simple ne marche pas.

Mais, si on réussit 8 construire des approximations dans lesquelles
on peut obtenir un comportement similaire et si ces approximations
convergent vers la solution de I'équation, on peut espérer d'obtenir
une bonne caractérisation du comportement de la solution de
I"équation de transport-diffusion dans le cas ou le coefficient de
diffusion tend vers 0.

Pour cela on doit utiliser les propriétés de la solution fondamentale
de ['équation de la chaleur et tenir dans ['esprit I'idée de la méthode
des caractéristiques pour la résolution de I'équation de transport.
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Deuxiéme Partie
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Nous proposons la méthode suivante :

e Construire les solutions approchées ul*" pour I'équation
de transport-diffusion

Oru+v-Vu=rAu+f,
en traduisant sur chaque pas de la discrétisation du temps

kAu par la solution fondamentale de I’équation de la chaleur,
v-Vu par le déplacement le long de la caractéristique.

e Construire aussi les solutions approchées ul®"l pour
I'équation de transport
otu+v-Vu=".
e Estimer la différence
ulonl(t, x) — ul®nl(t, x).
e Passer a la limite
yleonl —y s, ylosnl _s [0]
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Méthode [suite-1]

Définissons d'abord la famille de caractéristiques.

Pour chaque (t*,x*) € Ry x Q, Q C R, on définit la fonction
1(8) = (" x7; 1)

par |'équation intégrale

t

y(t*, x*; t) = x* —i—/ v(s,y(t*, x*; s))ds. (14)

t*

NOTE Ici on suppose une certaine régularité de v(t, x) de sorte
que I'équation admet la solution unique.

Si Q # RY, alors la caractéristique y(t*, x*; t) peut terminer sur la
frontiére 0Q.

Hisao Fujita Yashima New research orientation for partial differential equations of



Méthode [suite-2]

Maintenant introduisons la discrétisation du temps.

Il nous convient d’utiliser la famille de discrétisations du temps t
suivante :

o=t" <t cdl el oy, (15)

6p=27", n=1,2---. (16)

Introduisons aussi la notation

W) = (8 x 1),
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Méthode [suite-3]

Nous utilisons la solution fondamentale de I’équation de la
chaleur pour décrire la diffusion dans les solutions approchées.

C'est-a-dire, pour chaque x > 0 et pour chaque n, nous définissons
|x[?

(476 ,k)9/2 &P ( 40,k

ol (x) = ) xeR%.  (17)

C’est la solution fondamentale de I'équation de la chaleur
O = KAuU
au temps t = .
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Méthode [suite-4]

Définition des solutions approchées u®"l(t, x) pour I'équation
de transport-diffusion
du+v-Vu=rAu+f dans R,

On définit
ul® " (ty, x) = wp(x), (18)
(20 = [ el eI, Al oy +
o (80 (), (e A (x)), k=12, (19)
] b gl
umm (£, x) = tkntu[n,nl(tin_l LX)+ 5:—1 el (]

pour t‘,[(”]1 <t< t,[(n]. (20)
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Méthode [suite-5]

Le terme @n(y)u[”’”](t,g'ﬂl,y,gnl(x) — y)dy signifie que
R ’

la diffusion et le transport contribuent a la détermination de la

valeur de u®" au point x a I'instant t,[(n] comme la solution de

I'équation de la chaleur avec la donnée initiale u[’””’”](t,[('ﬂl, -) avec le

déplacement de v,Enl_(x) a x.
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Méthode [suite-6]

Si nous considérons I'équation de transport-diffusion de type
conservation de la masse

Oru+V - (vu) = kAu + f,

alors le terme intégrale de la définition (19) doit étre remplacé par

5 Oyl (e ™ (x = y) I (x = y)dy,

(v (x));

JI[(n](X) = det A, A= ( aX' )',j:l,---,d-

De la définition de J,[("](x) et de fy(t,[( ],x s) il résultera que

el

J’[("](X):exp(— 0 Ve - vsﬁ‘5 (7 )d).
k—
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Méthode [suite-7]

Comme nous devrons estimer la différence entre ul®"l(t, x) et
I'approximation de la solution de |'équation de transport, nous
avons besoin de définir les solutions approchées ul®" (¢, x) pour
I'équation de transport O;u+ v -Vu=f:
On définit

ul®rl(0, x) = up(x), (21)

O x) = Wl A )+

+ 0 F (67 A (), (T AT (), k=12, (22)
[n] [n]
t, —t t—t
(8, x) = 20l ) L0 (el )
n n
pour t,[ﬂl <t< t,[<"]. (23)

La convergence de ul[o’"](t,x) vers la solution ul[O](t,x) de

I'équation de transport se démontre sans difficulté.
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Méthode [suite-8]

2
Propriétés de la fonction Oll(t, x) = (@rtn)i2 exp ( - |:t|)
TR K

. / ol(t, x — y)oW(s, y)dy = O (t +5,x) Vs, t> 0,
Rd

. / oll(t, x)dx =1,
Rd

oll(t, x)xjdx = 0,

[}
Rd

° ol(t,x)|x|dx = CyV/tr, Cy : une constante,
Rd

. Oll(t, x)xx;dx = 26;tx, Sj=1sii=j, =0sii#]j
Rd
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Résultat | - Convergence de ul®™ vers yl!

Soit g € Z, g > 2. Si
D2v(t,x) € Cploc(R; Co(RY)) la| < q+1, (24)

f(t,x, u)
1+ |u

DS, f(t,x,u) € Cooc(Ry; CGo(RYxR)) 1< |o| < g+1, (26)

€ Chioc(Ry; Co(RY x R)), (25)

D up(x) € Cb(]Rd) la] < q+1, (27)

alors pour tout 7 > 0, les fonctions ul®" définies par (18)—(20)
avec leurs dérivées en x € RY d'ordre < q et la dérivée premiére en
t convergent uniformément sur [0, 7] x R? vers la solution ul*l du
probléme de Cauchy

Al 4 v vl = kAUl 4 7 u(0, x) = uo(x)-
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Résultat | - Convergence de u™" vers ull [suite-1]

Le résultat 1 se démontre par
e Estimation de

sup |Dgul™"I(t,x)],
xER

e Convergence uniforme de D2ul""I(t, x) sur [0,7] x RY qui
s’obtient par 'estimation de

sup |D2ul"m(t, x) — D ul= (¢, x)|,
xeRd

e Passage a la limite dans I'approximation de I'équation.

(Le résultat | est essentiellement obtenu dans
[Taleb-Selvaduray-Hisao,2020], [Smaali-Hisao,2021].)
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Résultat | - Convergence de u™" vers ull [suite-2]

Estimation

On obtient I'inégalité

sup |Deulsl(t )| < G, 0<t<r, G :indépendante de n,
xeR

a partir de

sup [DulM (el )| < (1 + C5,) sup [DEul= (el )| + Co,.
XeRd XERd

Ici il est essentiel que le premier coefficient soit (1 + Cd,), car
1
(1+ Cé,)on — € pour n — oo.

Ni (1 + Cé, +¢) ni (1 + C617°) ne donne pas d’estimation
souhaitée.
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Résultat | - Convergence de u™" vers ulfl [suite-3]

Convergence

Comme (n] _ [n+1] (%] [x] [x]
n n+1

b=ty o, Oy xOr =05,

en appliquant deux fois la définition (19) & u[“’"H](tgLH],x), ceci
A . - . +1

peut étre exprimé en fonction de u[“’”+1](t2[7<_2]7x).
Ainsi la différence D)‘?‘u[”’”](t,E"],x) — D)?‘u[“’”H](tz['LH],x) peut &tre
estimée par |'estimation en fonction de la différence
D)‘fu[’””’”](t,[ﬂ x) — Dgulsr+i () ["H] x) et on peut obtenir une
inégalité de type

sup [DEul™ (e x) — DEubmm (et ) <
x€ERY

< (14C,) sup [D2uls (¢l x)—perylert (el 4512 s,
x€ERd

. 1/2 .
d’oli, compte tenu de 2211 n/ < 00, on obtiendra la convergence

de D&yl

Hisao Fujita Yashima New research orientation for partial differential equations of



Résultat | - Convergence de u™" vers ull [suite-4]

Passage a la limite

Le point crucial du “passage a la limite” est le lemma suivant.

On a

U[H’n](t,[(n],X) _ u[ﬁ,n](,_.[[(’ﬂl,x)

5 = —v(t,[(n],x) . Vu["""](tﬁl,x)—&-
n

A= )+ (T u T )R (28)

avec
IR| < (62 + 6+/%) o, (29)

o Cy est une constante indépendante de n.

Ce lemme s’obtient par |'application de la formule de Taylor.
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Résultat | - Convergence de ull vers yl°)

On suppose que v et f vérifient les mémes conditions que celles du
résultat |. Alors, quel que soit 7 > 0, on a

sup  |ul®l(t, x) — ul(t, x)| < Kok, (30)
(t,x)€[0,7] xR
sup |D2ull(e, ) = Dgu(e,x)| < Kok,
(£,x)€[0,7] xR, 1<|ar|<q—1}
(31)
B o
sup | () — (e )| < Kom, (32)

(t,x)€[0,7] xR

ou Ko, Ki,r, Ko sont des constantes qui ne dépendent pas de x.

(Le résultat Il est essentiellement obtenu dans [Ait
Mahiout-Hisao,2023], [Hisao-Ait Mahiout,2023.)
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Résultat Il - Convergence de ul"l vers ul% [suite-1]

Le point crucial de la démonstration du résultat 1l est
I'estimation de la différence entre ul" et ulol,

Considérons d’abord la différence u[’“”](t,[("],x) - u[o’”](t,[f],x).

On pose
ol ) — WOl 4y = Dy 4 Dy + Dy,
ou
b=, R ) [l (e A () —y) = (e A (x))] dy,

Dy = =l A ()= a8 A (),

Ds = 8, [F(ef" ) x, ulerl (el ) — (), x, o7 %))
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Résultat Il - Convergence de ul"l vers ul% [suite-2]

Pour estimer |Ds|, on va utiliser les relations

/ oll(y)y;dy = o, / oll(y)y?dy = 2xdn,
Rd R4

pour j=1,--- d.
[Ici intervient le facteur k.]

D’aprés la formule de Taylor on a
a1 AT () = y) = A () =
=—y.-V u[”v"] t[”] , +
v Ve g)ls:wﬁ"}(x)

1 d 82u[n,n](t["] )
k—1
+ Vi 1—s)ds.
/o 2. v 9€;0¢; ‘ﬁ—v[kf](x)—sy( )

ij=1
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Résultat Il - Convergence de ul"l vers ul% [suite-3]

Compte tenu aussi de la relation |y;y;| < 3(y? —|—yj2), on en déduit

que
— | ely)y - Vel dy =0
[ oKy vetelo| a0
1 d a2u[n,n](t[”] 5)
ol / k1) 1 s)dsdy| <
‘ RY 2 0 i;yyj 9&;0¢; ‘ ()5 ( )dsdy
d 2 [k,n] (7]
B fnl
<ok Z sup u (k71 5)‘
o cere 080

Par conséquent, compte tenu de I'estimation de ul®"] (comme dans
le résultat 1), on obtient

|D1| < 6,kCr. (33)

[Notons que |D;| est majoré par un nombre proportionnel a x.]
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Résultat Il - Convergence de ul"l vers ul% [suite-4]

D’autre part, si on pose

A = sup [ul= (e x) — w0 ),
x€Rd

on obtient (avec une constante C)

|Dy| < A—1, |Ds3| < 6,C Ak—1.
On a donc
Ax < Supd(!D1| + |Da| + |Ds]) < (14 0,C)Ak—1 + dnra(74).
x€R

Comme u[“’”](t([,"],x) = up(x) = u[o’”](t([)"],x) et donc Ap =0, on
en déduit que

Ak < 0nkNa(74) Zf=1(1 +8,C)f,
d'ou

1
sup |ul®"(t, x)—ul®"(t, x)| < HA2(7+)E€CT pour 0 <t <.
x€R
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Résultat Il - Convergence de ul"l vers ul% [suite-5]

Comme ul®"(t, x) et ul®"I(t, x) convergent uniformément vers
ul®l(t, x) et vers ul®l(t, x), on en déduit I'inégalite (30).

Pour la différence
DLult(g),x) — D5, x),

méme si les formules sont beaucoup plus longues, on peut procéder
avec la méme idée et parvenir a I'inégalité (31).

Enfin I'inégalité (32) résulte de I'équation de transport-diffusion que
ul=nl vérifie et de I'inegalite (31).
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Résultat Il - cas du demi-espace

i) Cas de la condition de Dirichlet homogéne :

Résultat Il1-/

Pour v, f et up on suppose les conditions (24)—(27) (sur RY) avec
g = 2. On suppose en outre

f(t,x',0,0) =0, vg(t,x’,0)=0, w(x,0)=0 Vx' €RIL
Définissons les fonctions Gl "(t, x)

el (t, x) = /Rd On(V)Nul (8, X =y, ) (xg — ya)dy, (34)

ot A(-) est I'opérateur de prolongement impair de R sur R.

Alors les fonctions ul®™"l(t, x) et leurs dérivées premiéres en x
convergent uniformément sur [0, 7] X {xy > 0} pour tout 7 > 0, et
leurs dérivées secondes en x convergent ponctuellement sur

[0, 00[xIRY. La fonction limite vérifie I'équation (ponctuellement en
x et au sens généralisé en t) sur R avec la condition de Dirichlet
homogéne.
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Résultat Il - cas du demi-espace [suite-1]

Le résultat Ill-i est obtenu essentiellement dans
[Aouaouda-Ayadi-Hisao,2022], [Gherdaoui- Taleb-Selvaduray,2023].

Le résultat Il-/ s’obtient par un raisonnement analogue au résultat
[, mais on a besoin aussi de

e Utilisation du prolongement impair,

e Estimation de I'effet de la condition aux limites.

L'opérateur de prolongement impair A(-) de R, sur R est défini
pour les fonctions w(-) définies sur r > 0 comme suit :

w(r), si r>0
Aw(:))(r) =1 0, si r=0
—w(—r), si r<0
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Résultat Il - cas du demi-espace [suite-2]

On procéde, en prolongeant les données sur RY par

Uo(x) = ANuo(x', ) (xa), x = (x',xq) € RY, (35)
V/(t, X', xq) = V'(t,x', —xq) = V'(t, X', xq),
x'eRITL x>0, t>0, (36)
Vy(t,x', xq) = —Via(t, X', —xq) = vg(t, X', xq),
X eRIL x;>0, t>0, (37)
f(t,x',xq, U), si xg >0
F(t,x',xq,U) =< 0, si xg =0 |

—f(t‘,X/7 —Xd, —U), si xg <0
t>0,xeRY, UeR. (38)
On pose aussi

V(t,x) = (V'(t,x), V4(t,x)) € RY.
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Résultat IIl - cas du demi-espace [suite-3]

Alors on peut considérer le probléme dans I'espace entier RY
0:U(t, x)+V(t,x)-VU(t,x) = kAU(t,x)+F(t, x, U(t, x))

dans ]0, o[ xR¢, (39)

avec la condition initiale
U(0, x) = Up(x) dans RY. (40)

Donc on peut construire les solutions approchées U[”](t,x) d’'une
maniére analogue au résultat | et procéder de maniére analogue.

La restriction a {x4 > 0} de la solution U(t, x) du probléme
(39)-(40) sera la solution du probléme original. La condition aux
limites “ul®l(t,x’,0) = 0 sur {x4 = 0}" sera vérifiée par le fait que
U(t, x) est impair par rapport a x4.
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Résultat 1l - cas du demi-espace [suite-4]

Deuxiémement on a besoin de |'estimation particuliére de |'effet
de la condition aux limites.

En effet, méme si aux solutions approchées Ul (¢, x) on peut
appliquer, en principe, la méthode utilisée pour le théoréme I,
92 F(t,x, Ull(t, x)) et 92 Up(x) ne sont pas continues sur

{xq = 0}, ce qui exige des estimations particuliéres des solutions
approchées Ul"l(t, x).

Comme la dérivée de la discontinuité d'une fonction est la § de
Dirac multipliée par I'amplitude du saut, pour estimer la dérivée
troisieme de Ul"l(t, x) il faut estimer la propagation des valeurs
données sur I'hyperplan {x4 = 0} dans |'espace R¢.
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Résultat IIl - cas du demi-espace [suite-5]

i) Cas de la condition de Neumann homogéne :

Résultat Il1-7/

Pour v, f et up on suppose les conditions (24)—(27) (sur Rﬁlr) avec
g = 2. On suppose en outre

Vd(taX/ao) = 07 8dej(t7xl7xd)‘xd:0 = 07 J: 17' o 7d - 17

Oy, F(t, X', Xq, u)|Xd:0 =0, 8Xduo(x’,xd)‘ =0 Vx' e R

xq=0
Alors les solutions approchées ul®"l(t, x) définies d’une maniére
analogue aux cas précédents et leurs dérivées premiéres et secondes
en x convergent uniformément sur [0, 7] X {xq > 0} pour tout
7 > 0. La fonction limite vérifie I'équation (ponctuellement en x et
au sens généralisé en t) sur RY avec la condition de Neumann
homogéne.

Le résultat Ill-ii est essentiellement obtenu dans
[Gherdaoui-Selvaduray-Hisao,2024].
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Résultat IIl - cas du demi-espace [suite-6]

Pour le résultat Ill-ii on utilise le prolongement pair de R+ sur
I'espace entier RY.

Plus précisément, on pose
Uo(x) = No(uo(x',))(xa),  x = (X', x4) € RY,
Vi(t, x) = No(vj(t, X, ) (xa), t>0, xeRY j=1,--- d—1,
Vy(t,x) = A (va(t, X', ) (xq), t>0, xeRY,
V(t,x) = (V'(t,x), Vg(t,x)), t>0, xeRY,
F(t,x, U) = No(F(t, X, -, U))(xq), t>0, xR UEcR,

ou Ag est |'opérateur de prolongement pair et Ay est I'opérateur de
prolongement impair.
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Résultat Il - cas du demi-espace [suite-7]

Et on définit les solutions approchées Ul"l(t,x), n=1,2,---, par

UM x) = Uo(x),  x eRY,
Ul (el / O,(y) U™ x=5, V(e x)—y)dy+

o P o UM x)), xeRY k=12,

(o] [
t,'—t t—t
U, x) = F— U )+ —*= Ul (g7, )

n n

pour t,[ﬂ] <t< t,[j], x € RY.

Pour ces solutions approchées Ul"l(t, x) on peut utiliser le
raisonnement de la démonstration du théoréme |I.

Il n'est pas nécessaire de faire d’estimation particuliére de I'effet de
la condition aux limites.
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Résultat IIl - cas du demi-espace [suite-§]

i) Convergence pour k — 0 avec la condition de Neumann
homogéne :

Résultat I1-/ii

Pour v, f et up on suppose les conditions (24)—(27) (sur RY) avec
g = 2. On suppose en outre

vg(t,x’,0) =0, axd\g(t,x',xd)\Xdzo =0, j=1,---,d—1,

Ox, f(t, X', xq, u)|Xd:0 =0, 3de0(X,,Xd)‘Xd:0 =0 Vx' € RI-T,

Alors pour la solution ul®l(t, x) de I'équation avec diffusion et avec
la condition de Neumann homogéne et la solution ul%l(t, x) de
I'équation sans diffusion et avec la condition de Neumann
homogéne quel que soit 7 > 0, il existe une constante Co = Co(7),
indépendantes de « et telle que

sup 1, x) — ul¥l(t, x)| < Cor,
(t,X)E[O,T]XRi
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Résultat IIl - cas du demi-espace [suite-9]

Résultat 1l1-iii [suite]

sup 10, ul% (£, x) — B, ul(t, x)| < Cor, i=1,---,d,
(t.x)€[0,r]xRY

sup |Aull(t, x)] < Co.
(t,x)€[0,7] XRi

Le résultat Ill-/ii est essentiellement obtenu dans
[Gherdaoui,a-paraitre].

IDEE DE LA DEMONSTRATION

De maniére analogue a la démonstration du résultat I1l-ii, on définit
le prolongement pair des fonctions données.
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Résultat IIl - cas du demi-espace [suite-10]

Avec les données prolongées sur RY on définit

les solutions approchées Ul (¢, x) pour I'équation avec
diffusion,

et les solutions approchées Ul%"(t, x) pour pour I'équation sans
diffusion.

Cela étant, en utilisant la technique de [Ait Mahiout-Hisao,2023] on
peut obtenir

sup UL, x) — UM(t, x)| < Cor,
(t,x)€0,7]xRY

sup 10, U (¢, x) — 0, Ul (£, x)| < Cor, i=1,---,d,
(t,x)€[0,7] xR

sup  |AUM(t, x)| < Co.
(t,x)€[0,7] XRi

On en déduira les inégalités analogues pour ul?l(t, x) et ull(t, x).
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Résultat Il - cas du demi-espace [suite-11]

iv) Convergence pour x — 0 avec la condition de Dirichlet
homogéne :

Le travail est en cours.
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Résultat IV - cas d'un coefficient de diffusion non-constant

Dans le cas ot le coefficient de diffusion ~ dépend de x € RY,
on a besoin de nouvelles techniques :

e introduction de “fonctions de position X,f’yh(x)",

e définition des solutions approchées a t,[("] par

u[”’"](t,[("],x) =

= [, @m0y, L () — atx)y)dy +8ar (571, 0), (41)

1 —|x|?
< e 4on ,
(476 ,)2

ot a(x) = +/k(x), @Ll](x):

au lieu de (19).

Les définitions (18) et (20) formellement restent identiques.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-1]

Pour le moment nous nous limitons au cas ol f ne dépend pas de
u. Onale

Résultat 1V-/

Pour v et ug on suppose les conditions (24) et (27). On suppose en
outre que

D2k(x) € Co(RY)  VaeN?, |a| <qg+1,

DR f(t,x) € Cojoc(Ry; Co(RY))  VaeN?, Ja] < q+1.

Alors, quel que soit 7 > 0, les fonctions ul™"](t,x) définies par
(18), (41) et (20) et leurs dérivees D2 ul™nl(t, x), |a| < q,
convergent pour n — oo uniformément sur [0, 7] x RY
respectivement vers une fonction ul*l(t, x) et vers ses dérivées
D ull(t, x).
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-2]

Résultat 1V-/ [suite]

En outre la dérivée droite par rapport a t de ul®"(t,x)

U[H’n](tl[(n],X) - u[n,n](tl[(’ﬂl’x)
dn

(atu[ﬁ’"])Jr(t’X) =

pour t,[('ﬂl <t< t,[("], k=1,2,---,

convergent pour n — oo uniformément dans [0, 7] x RY vers
drulFl(t, x) et la fonction limite ul¥l(t, x) satisfait ponctuellement a
I"équation

Dl (£,3) + v(t,x) - ValI(£, x) = k() AUl (£,3) + F(£,%)

dans R, x RY et a la condition initiale ul®(0, x) = up(x) dans RY.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-3]

Le résultat IV-/ est essentiellement obtenu dans
[Nemdili-Hisao,2024].

Rappelons que I'expression
[ elout e fL () ~ s
Rd

utilisée dans la définition de u[“’”](t,[("],x) est équivalente a

[ o 90 g A Al ()~ y)ay
rd (475(x))4/2 46,k(x) k=17 Tk ’

ce qui résulte immédiatement du changement de variables

y'=a(x)y = V/K(x)y.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-4]

Fonctions de position X,f’;,’(x)

On la définit par

XP0(x) = x, (42)
,h ,h—1 ,h—1 h
Xy () = Ay (X 0) = a0 b=k
(43)
(ici h dans la notation y" est un simple indice et ne désigne pas la
puissance).

Pourquoi il nous faut utiliser la fonctions de position X:yh(x) ?

Si on faisait I'estimation de axiu[’*’”](tlgn],x) sur I'expression de
u[”’”](t,[(”],x) donnée sur chaque pas “de t/[ﬂl a t,[("]", alors on

devrait estimer
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-5]

a K,n n n
= [ OB ul (e Al () - alx)y)dy =

Rd Xi

_ [1] /in ”]
_/e )Z []tkl,)é [n](x)a(x)x

X (D™ (x) — Dga(x)y;)dy.

Pour estimer le terme @L](y)agju[“’”]axia(x)yj nous serions
contraints a utiliser

/ oM(y)lyildy = C/an,

mais 2"/, = 2"/2-" = /2" — oo pour n — oo. Donc
I'estimation de GX,u[”](t,[(] x) sur chaque pas “de t[ ] a t[”]”
nous donne pas d’estimation utile.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-6]

. .. . .. h
Par contre, si nous utilisons la fonctions de position X:y (x), alors

u[”’”](t,[("],x) peut &tre écrite sous la forme

el = | Lo dy” - dy'
h=1

k—1 h
w003 [ (T @ DAL, 3 XNy -+
h=1 h=1

+onF (el x).

Donc I'estimation de sa dérivée se réduit a |'estimation de

uo(X,f’;f(x)) et de f(t,E'ﬂh_l,X,f’;’(x)), qui peuvent &tre estimés sur

la base de I'estimation de X/f:(x)
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-7]

Nous avons besoin de I'estimation des “fonctions de positions”
nh .
Xy, (x)- On a le lemme suivant.

Soit X,f)/,’(x) la fonction définie par (42)—(43). Alors sous les
conditions du résultat IV-i il existe une fonction continue et
croissante ®(9™)(s) = &(T:9m)(s) indépendante de n, k et h et

telle que, si t/[("] < 7T, on ait

h d
Sup/ On(y") (DL(XT(x)))?) dyt - dy? <
38, o (1L 06) (3020000
S ¢(q7m)(h5n)
pour tout @« = (aq, -+ ,aq) € N9, la| =g+ 1.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-8]

Nous avons besoin aussi la convergence des “fonctions de positions”
nh .
Xy, (x). On a le lemme suivant.

Supposons que I'hypothése du résultat I1V-i est vérifiée. Soit
X,f:(x) la ff)n.ction définie par (42)—(43). Soit X,f_’:Ly(x) la
fonction définie par les relations

X:H’y(x) = X,
v 7h PR
XI?+1,y(X) -
o n,h—1 onh—1 _
= o (KPP (0)) — AR OO 2 o+ y2hy.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-9]

suite de I'énoncé du lemme 2

Alors

1) pour chaque (7, m) € Ry x (N\{0}) il existe une constante
Ka = Ka(7, m) indépendante de n, k et h et telle que, si t,[ﬂrl <7,

alors on ait

h/ n+l, 2h on,h 2m 1 2h
SUP/ H@"H ’X2k+2,y X1,y (X )T dyt - dy*<
xR J (RIS

< bnt1 el2hdni1

2) pour chaque (7, m, q) € Ry x (N\{O}) (N\{O}) il existe une
fonction continue et croissante W(4m)(s) = W(T:9:m)(5)

]
+1

indépendante de n, k et h et telle que, si t,[( <7, on ait
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-10]

suite de I'énoncé du lemme 2
sup/ H On(
x€RI J (Rd)2h

h'=1

X" h @ 2\ M
2/2L+122y( )); — D2 (Xk+1y( ) ) dyl .. dy?h <

Ms.

A

j=1
< (5n+1)2177 V(@M (hd,q)

pour tout a = (g, ,aq) € N9, |a] = q.

NOTE La derniére inégalité peut &tre améliorée dans le sens que le

- 1/2 . 1
second membre peut avoir un facteur (5n/+1 au lieu de (dp41)29
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-11]

L’estimation de ul®"] se fait avec I'estimation de X,f;’(x)
et la convergence de ul®" se démontre a I'aide de la convergence
de X["(x).

Y
Pour la démonstration de la convergence uniforme de la dérivée
droite (ou bien dérivée gauche) par rapport a t de ul®"I(t,x), on a
utilisé la continuité uniforme sur [0, 7] x R? des fonctions
ulsrl(t, x), 0, ul®nl(t, x) et &QOX,.U[”’"](t,x).
Pour démontrer cette continuité uniforme, on a utilisé des
estimations des “fonctions de position leyh(x)

Commentaire

Pour le cas o0 f dépend de u, le travail est en cours.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-12]

Cas ou x = (t) dépend de t
Si k(t) dépend seulement de t, alors on peut introduire le
changement de variables t — s par

s = s(t) :/0 k(t")dt,

de sorte que
dt(s) 1
s k(t)

d!
et donc, en divisant I'équation par x(t), on a I'équation

Osu(t(s), x) = Oru(t, x) Oru(t, x)

1
Osu(t(s), X)—i—Wt) v(t(s),x)-Vu(t(s),x) =

— Au(t(s),x) + H(lt)f(t(s),x, u(t(s), x)).
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-13]

De cette maniére on a le résultat [Taleb-Gherdaoui,2025]

Résultat 1V-ii

On suppose que k(t) > 0 p.p. sur R et que
[eo) bn 00

Ve > 036 > 0 t.q. si Z/ k(t)dt <4, anrsZ(bn —ap) <g,
n=1v3an

n=1

L ey 1 DLuf(txou) borné <3
w(E) Lv(t, x), RO 1xd “ug(x), bornée, |a| <3,
L pey(e(s), %), — D F(t(s), x,u) €A, |a <2

XV X)) Ty X.U , X, u ) o) X 4,
K(t(s)) Kk(t(s))

N = {p : continue,V7 >0 > 22, A n(p) < o0},
)‘T,H(QO) = SUP{ |50(r17x) - w(r27x)‘7 n,rn < [O,T],X S Rda |r1 - I’2| < 6"}
Alors les solutions approcées u[""”](t,x) convergent pour n — oo.
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Résultat |V - cas d'un coefficient de diffusion non-constant

[suite-14]

Cas ou k = k(t,x) dépend de t et de x

Dans ce cas, en utilisant les techniques soit du résultat IV-/ soit du
résultat IV-ii, on peut obtenir le résultat suivant
([Bezia-Gherdaoui,soumis])

Résultat 1V-iii
On suppose que k(t, x), v(t, x), f(t,x) et ug(x) vérifient les
conditions du résultat IV-/ et celles du résultat IV-ii, en particulier

2k(t, x)

- e A.
SUpy crd k(t,y) + inf, crd k(t,y)

Alors les solutions approchées ul®"](t, x) convergent pour n — oo
de maniére aux cas précédents.
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Perspective | - dans un domaine plus générale

Il est naturel de poser la question :

Est-ce qu'il est possible de généraliser ce qu’on a fait au cas ou le
domaine est différent de RY et ]Ri?

Supposons que la frontiére de ce domaine est suffisamment
réguliére. Alors on peut envisager de transformer un sous-domaine
touchant la frontiére en le demi-espace. Alors il faut introduire le
changement de variables, qui transforme aussi le laplacien en un
opérateur différentiel.

Donc on a besoin de la possibilité de traiter |I'équation de
transpor-diffusion avec un opérateur elliptique qui dépend de
x. Nous pensons que c’est possible en généralisant la technique de
[Nemdili-Hisao,2024].

Puis, naturellement il faut utiliser le raisonnement de nos travaux
dans ]Ri.
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Perspective |l - avec des conditions aux limites plus générales

Jusqu’d maintenant nous nous sommes limités aux cas de condition
de Dirichlet homogéne ou condition de Neumann homogeéne sur la
frontiére du demi-espace.

Si on considére par exemple la condition de Dirichlet non-homogéne
sur la frontiére du demi-espace et si on construit une fonction
u1(t, x) telle que la fonction u(t, x) = u(t, x) — T1(t, x) vérifie la
condition de Dirichlet homogéne, alors on peut obtenir un résultat
analogue. Mais si on le fait d’'une maniére élémentaire, il faut
supposer beaucoup de régularité des données, ce qui nous semble
peu naturel. Donc nous devons chercher une généralisation avec des
conditions de régularités raisonnables.

De plus, lorsque la fonction de transport v est entrante (v-n <0
avec la normale extérieure n), le probléme n’est pas facile. Nous
avons déja tenté ([Selvaduray-Hisao,soumis]), mais le résultat est
faible. Il nous faut éclaircir la situation.
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Perspective Il - dans |'espace de Holder

L’'espace de Hdlder peut étre un outil adapté a notre méthode,
car il n'exige pas I'intégrabilité de la fonction considérée, en
particulier dans un domaine non borné.

Dans [Nemdili-Korichi-Hisao,2024] nous avons montré que les
solutions approchées jouissent de la régularité hsldérienne CK* si
les données possédent la méme régularité holdérienne et elles
convergent vers la solution de I'équation dans I'espace CKt7',

o’ < o, et la fonction limite jouisse de la régularité Ckto,

Mais nous voulons aller plus loin : montrer que la solution jouisse
de la régularité holdérienne Ckt2to (e qui est le cas de la solution
de I’équation de la chaleur, comme nous I'avons évoqué dans la
premiére partie de ce séminaire.

Mais il nous semble que c’est assez difficile. Mais il vaut la peine de
tenter.
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Perspective IV - calcul numérique

Comme nous construisons les solutions approchées selon le principe
du schéma explicite de la méthode de différences finies, on pourrait
penser qu'il est possible de construire un schéma numérique basé
sur notre solution approchée. Nous avons déja obtenu un “bon”
résultat numérique dans [Aouaouda-Ayadi-Hisao,2022]. Mais ce
“succés” est dii aux circonstances particuliéres du probléme : il
s'agissait d'une modélisation de la diffusion de la vapeur qui sort de
la surface de la mer; dans ce modéle on s'intéressait a la diffusion
de la vapeur dans la direction verticale (presque indépendamment
de la position horizontale), tandis que le transport (vent) est
supposé horizontal.

Pour avoir un schéma numérique plus général et acceptable, il faut
métriser la diffusion due au calcul numérique de telle sorte que I'on
puisse apprécier la diffusion due au probléme mé&me, en évitant que
la diffusion due au calcul numérique envahisse le résultat.
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Perspective V - systéme d’'équations semi-linéaires

Dans [Hisao-Ait Mahiout,2023] nous avons déja traité le cas le plus
simple de systéme d’'équations semi-mlinéaires, ce qui toutefois ne
différe pas beaucoup du cas d'une équation.

Maintenant nous sommes en train d’étudier le systéme d’équations
du modéle de compétion de m espéces avec transport et diffusion.
Le transport est du type conservation de la masse comme
I'équation de continuité. Il faut établir une bonne estimation pour le
terme non-linéaire, mais ce n'est pas difficile.

Une question plus intéressante sera par exemple |'équation de
Lotka-Volterra du modéle de proie-prédateur avec transport et
diffusion.

Une question encore plus intéressante serait un systéme ol les
termes de diffusion sont inter-connectés, c'est-a-dire a I'équation de
la i-éme composante intervient la diffusion d’autres composantes
du systéme.
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Perspective |V - équations de la mécanique des fluides

Les équations de la mécanique des fluides sont les objets que
nous voulons le plus atteindre. En effet, dans la mécanique des
fluides le transport et la diffusion ont leur propre sens.

Toutefois les équations de la mécanique des fluides ne sont pas
faciles a traiter, car essentiellement le transport est un connu.
Donc les outils que nous avons construits ne seront pas suffisants
pour traiter ces équations.

Peut-étre on peut commencer avec les équations linéarisées ou
semi-linéariser.

Peut-&tre il sera utile d’étudier I'équation de Burgers comme le cas
le plus simple des équations quasi-linéaires. La comparaison avec
des propriétés connues sur |'équation de Burgers pourra nous
donner de nouvelles intuitions.

On va voir.
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