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Introduction aux équations aux dérivées partielles

A di�érence des équations di�érentielles ordinaires, pour les
équations aux dérivées partielles, dont la forme générale est

Φ
(
x1, · · · , xd ,

∂u

∂x1
, · · · , ∂u

∂xd
, · · · , ∂

mu

∂xm1
,

∂mu

∂xm−1
1 ∂x2

, · · · , ∂
mu

∂xmd

)
= 0,

on ne connaît pas de méthode applicable à tous les types
d'équations.

Ainsi, nous sommes obligés d'étudier les équations aux dérivées
partielles avec des méthodes di�érentes selon le type d'équations.

Rappelons donc la

classi�cation des équations aux dérivées partielles

en des types [ici nous nous limitons aux équations aux dérivées
partielles du premier et second ordre].
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Classi�cation des équations aux dérivées partielles

Equations du premier ordre :

Equations de transport ∂tu + v · ∇u = 0

Equations du second ordre :

Equations du type elliptique

Exemple : l'éqaution de Poisson ∆u = f

Equations du type hyperbolique

Exemple : l'éqaution des ondes ∂2t u = ∆u

Equations du type parabolique

Exemple : l'éqaution de la chaleur ∂tu = ∆u

Il y a aussi des équations du second ordre qui ne sont pas clas-
si�ées dans ces trois types, par exemple : l'éq. de Schöredinger
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Equation de transport - méthode des caractéristiques

Commençons par l'équation de transport.

Pour simpli�er, considérons l'équation de transport dans [0,∞[×Rd

∂tu(t, x) + v(t, x) · ∇u(t, x) = f (t, x , u(t, x)), (1)

avec la condition initiale

u(0, x) = u0(x) x ∈ Rd , (2)

où u0(x) est une fonction donnée.

Dans l'équation (1) et dans la suite nous utilisons la notation

v(t, x) · ∇ =
d∑

i=1

vi (t, x)∂xi .
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Méthode des caractéristiques - rappel de la dérivée totale

Le problème de Cauchy (1)�(2) peut être résolu par
la méthode des caractéristiques.

Pour le voir, rappelons d'abord la dérivée totale :

Si γ : [0,∞[ → Rd est continue et u : [0,∞[ ×Rd → R est de
classe C 1, alors la dérivée totale de u(t, γ(t)) est

d

dt
u(t, γ(t)) = lim

h→0

1
h

[
u(t + h, γ(t + h))− u(t, γ(t))

]
=

= ∂tu(t, x)
∣∣
x=γ(t)

+
d∑

i=1

∂xiu(t, x)
∣∣
x=γ(t)

d

dt
γi (t) ≡

≡ ∂tu(t, γ(t)) +
d

dt
γ(t) · ∇u(t, γ(t)).
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Caractéristiques

Considérons l'équation di�érentielle ordinaire

d

dt
γ(t) = v(t, γ(t)), t ≥ 0, γ(t) ∈ Rd ,

avec la condition initiale

γ(0) = x (0) ∈ Rd .

En faisant varier la donnée initiale x (0) dans Rd (et en supposant
que v(t, x) jouit d'une régularité su�sante pour résoudre cette
équation), on aura une famille de courbes

γ(t) = γ(x (0); t), x (0) ∈ Rd .

Ces courbes peuvent être obtenues aussi par l'équation intégrale

γ(x (0); t) = x (0) +

∫ t

0

v(s, γ(x (0); s)ds.
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Résolution de l'équation de transport

En substituant d
dt γ(x

(0); t) = v(t, γ(x (0), t)) dans

∂tu(t, γ(x
(0); t)) +

d

dt
γ(x (0); t) · ∇u(t, γ(x (0); t)),

on obtient

∂tu(t, γ(x
(0); t))+v(t, γ(x (0); t))·∇u(t, γ(x (0); t)) =

d

dt
u(t, γ(x (0); t)).

Donc, en résolvant les famille des équations di�érentielles
ordinaires

d

dt
u(t, γ(x (0); t)) = f (t, γ(x (0); t), u(t, γ(x (0); t))), t > 0, x (0) ∈ Rd ,

on résout l'équation de transport

∂tu(t, x) + v(t, x) · ∇u(t, x) = f (t, x , u(t, x))

avec la condition initiale

u(0, x (0)) = u(0, γ(x (0); 0)) = u0(x
(0)).
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Equation de transport - synthèse

Si on suppose les conditions qui garantissent la dé�nition des
caractéristiques γ(x (0); t), on peut transformer l'équation de

transport

∂tu(t, x) + v(t, x) · ∇u(t, x) = f (t, x , u(t, x))

en une famille d'équations di�érentielles ordinaires

d

dt
u(t, γ(x (0); t)) = f (t, γ(x (0); t), u(t, γ(x (0); t))).

Ainsi, en résolvant les équations di�érentielles ordinaires avec la
condition initiale

u(0, x (0)) = u0(x
(0)),

on obtiendra la solution de l'équation de transport avec cette
condition initiale.

Si le domaine Ω n'est pas Rd , il su�t de poser la condition d'entrée sur la

partie de la frontière ∂Ω où v · n < 0 (ici n est la normale extérieure sur

∂Ω) et, en dé�nissant la caractéristique de cette partie, de transformer

l'équation de transport en des équations di�érentielles ordinaires.
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Pour les équations aux dérivées partielles du second ordre

Depuis l'époque de D'Alembert, Euler, etc. jusqu'au début du XXe

siècle, on cherchait la solution explicite de l'équation. Mais avec
l'arrivée de l'Analyse fonctionnelle, en particulier celle des espaces
de Sobolev, on a eu la tendance de considérer une possible solution
comme un élément d'un espace fonctionnel. La norme d'une
fonction est un nombre réel ; de la norme on ne peut pas
reconstruire la fonction, qui est un élément de RΩ (s'il s'agit d'une
fonction f : Ω → R). Ainsi la considération d'une fonction comme
un élément d'un espace fonctionnel a fait perdre l'in�nité
d'information.

Alors je tente de récupérer les informations des solutions
fondamentales explicites, convaincu que ces informations récupérées
nous donnent la clé pour ouvrir une nouvelle perspective pour les
équations aux dérivées partielles.

Hisao Fujita Yashima New research orientation for partial di�erential equations of parabolic type Nouvelle orientation de recherche pour les équations aux dérivées partielles du type parabolique



Fonction harmonique pour l'équation de Poisson

Considérons l'équation de Poisson

∆u(x) = f (x), x ∈ Ω ⊂ Rd , d ≥ 2.

On pose

U(x) =

{
1
2π log |x | pour d = 2

− 1
(d−2)|Sd−1| |x |d−2

pour d ≥ 3
x ̸= 0,

où |Sd−1| est la super�cie de la surface de la sphère de rayon 1.

Alors la fonction

u0(x) =

∫
Ω
U(x − y)f (y)dy

véri�e l'équation ∆u0 = f dans Ω.
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Fonction harmonique pour l'équation de Poisson [suite]

Si Ω = Rd , d ≥ 3, et
∫
Rd |f (x)|dx <∞, alors u0(x) véri�e, outre

l'équation de Poisson, la condition

u0(x) → 0 pour |x | → ∞.

- Exemple d'application :
pour d = 3, le potentiel gravitationnel engendré par la masse
distribuée avec la densité ϱ(x) dans l'espace.

Si Ω est di�érent de Rd , en particulier dans le cas où Ω est borné,
pour résoudre un problème concret, il faut corriger la fonction
u0(x) en tenant compte de la condition aux limites.
Pour cet argument, voir par exemple [Mikhaïrov,1976/1980].
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Equation des ondes - solution de D'Alembert

Comme il est bien connu, la solution du problème de Cauchy

∂2t u(t, x) = ∂2xu(t, x), u(0, x) = φ(x), ∂tu(t, x)
∣∣
t=0

= ψ(x),

est donnée par

u(t, x) =
φ(x + t) + φ(x − t)

2
+

1
2

∫ x+t

x−t
ψ(ξ)dξ.

Cette solution est valable pour tout t ∈ R et pour tout x ∈ R.

Pour l'équation des ondes ∂2t u = ∆u dans Rd ∋ x , il y une formule
similaire, mais plus compliquée et ça ne donne pas immédiatement
la solution explicite du problème de Cauchy. Pour les détails, voir
[Evance,2010].
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Equation de la chaleur - à partir de Fourier

L'équation de la chaleur ∂tu = ∆u a été formulée par Fourier dans
[Fourier,1822] et sa solution a été donnée dans le même ouvrage
(dans lequel il a introduit aussi la série de Fourier pour décrire la
variation de la distribution de la température sur un segment [a, b]).
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Solution fondamentale de l'équation de la chaleur

Soit

Θ(t, x) =
1

(4πtκ)d/2
exp

(
− |x |2

4tκ

)
, t > 0, x ∈ Rd . (3)

Soit u0(x) une fonction dé�nie sur Rd à valeurs réelles continue et
bornée.
Alors la fonction

u(t, x) =

∫
Rd

Θ(t, x − y)u0(y)dy (4)

véri�e l'équation

∂tu(t, x) = κ∆u(t, x) t > 0, x ∈ Rd

et la relation
lim
t→0+

u(t, x) = u0(x).
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Solution fondamentale de l'équation de la chaleur [suite]

Si en outre f (t, x) est une fonction dé�nie sur [0,∞[×Rd à valeurs
réelles continue et bornée sur [0, τ ] × Rd pour tout τ > 0, alors la
fonction

u(t, x) =

∫
Rd

Θ(t, x − y)u0(y)dy+

+

∫ t

0

∫
Rd

Θ(t − s, x − y)f (s, y)dyds (5)

véri�e l'équation

∂tu(t, x) = κ∆u(t, x) + f (t, x) t > 0, x ∈ Rd

et la relation
lim
t→0+

u(t, x) = u0(x).
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petite remarque

La solution u(t, x) donnée dans (4) ou (5) est bien dé�nie sur Rd si
u0(x) et f (t, x) sont continues et bornées, mais u(t, x) (ni
|u(t, x)|p pour quelconque p ≥ 1) n'est pas nécessairement
intégrable.

Donc u(t, ·) n'appartient en général pas à un espace de Sobolev (ni
à un espace de Lebesgue).

Alors les espaces fonctionnels adéquats sont

C k(Rd) � espace des fonctions k-fois continûment dérivables avec
la norme

∥u∥C k (Rd ) =
∑
|α|≤k

sup
x∈Rd

|Dα
x u(t, x)|,

Dα
x =

∂|α|

∂xα1

1 · · · ∂xαd
d

, |α| =
d∑

j=1

αj ,

et
C k+σ(Rd), 0 < σ ≤ 1, � espace de Hölder.
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Continuité höldérienne - notations

Notations :
Qτ = [0, τ ]× Rd .

[φ]
(k+σ)
Qτ

= [φ]
(k+σ)
x ,Qτ

+ [φ]
( k+σ

2
)

t,Qτ
(6)

où

[φ]
(k+σ)
x ,Qτ

=
∑

2r+|ν|=k

[Dr
tD

ν
xφ]

(σ)
x ,Qτ

,

[φ]
( k+σ

2
)

t,Qτ
=

∑
0< k+σ

2
−r− |ν|

2
<1

[Dr
tD

ν
xφ]

( k+σ
2

−r− |ν|
2
)

t,Qτ
,

[φ]
(σ)
x ,Qτ

= sup
(t,x),(t,y)∈Qτ , x ̸=y

|φ(t, x)− φ(t, y)|
|x − y |σ

,

[φ]
(σ′)
t,Qτ

= sup
(t,x),(s,x)∈Qτ , t ̸=s

|φ(t, x)− φ(s, x)|
|t − s|σ′ ,
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Continuité höldérienne - estimation

L'estimation fondamentale est
1) Pour la solution u(t, x) du problème

∂tu(t, x)− κ∆u(t, x) = f (t, x) pour t > 0, x ∈ Rd ,

u(0, x) = 0 pour x ∈ Rd

on a
[u]

(k+2+σ)
Qτ

≤ C [f ]
(k+σ)
Qτ

(7)

avec 0 < α < 1 et une constante C .

(voir [Ladyzhenskaya-Solonnikov-Ural'tseva,1967/1968])

La démonstration de (7) se base sur l'estimation de∣∣∣∂xi∂xj ∫
Rd

Θ(t − s, x − y)f (s, y)dyds
∣∣
x=x(1)

−∂xi∂xj
∫
Rd

Θ(t − s, x − y)f (s, y)dyds
∣∣
x=x(2)

∣∣∣.
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Continuité höldérienne - estimation [suite]

2) Pour la solution u(t, x) du problème

∂tu(t, x)− κ∆u(t, x) = 0 per t > 0, x ∈ Rd ,

u(0, x) = u0(x) per x ∈ Rd

on a
[u]

(k+2+σ)
Qτ

≤ C [u0]
(k+2+σ)

x ,Rd (8)

avec une constante C .

3) Pour la solution u(t, x) du problème

∂tu(t, x)− κ∆u(t, x) = f (t, x), u(0, x) = u0(x)

on a
[u]

(k+2+σ)
Qτ

≤ C ([u0]
(k+2+σ)

x ,Rd + [f ]
(k+σ)
Qτ

). (9)
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Pour résoudre l'équation plus générale dans l'espace de
Hölder

Pour construire la solution (locale) de l'équation

∂tu(t, x)− κ∆u(t, x) = f (t, x)− v(t, x) · ∇u(t, x)

on utilise l'estimation du type

∥v · ∇U∥
C k+σ, k+σ

2 (Rτ )
≤ Cvτ

ε∥U∥
C k+2+σ, k+2+σ

2 (Rτ )
, 0 < ε < 1

et l'équation
∂tU − κ∆U = −v · ∇U.

Littérature :
[Ladyzhenskaya-Solonnikov-Ural'tseva,1967/1968]
[Krylov,1997], etc...
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La fonction Θ(t, x) et le mouvement brownien

Rappelons que pour κ = 1
2
la fonction Θ(t, x) est la densité du

mouvement brownien standard B(t) au temps t > 0 :∫
D
Θ(t, x)dx = P({B(t) ∈ D}) = E[χD(B(t))]

pour tout sous-domaine D de Rd .

Cette relation nous permet d'exprimer la solution u(t, x) donnée
dans (4) sous la forme

u(t, x) =

∫
Rd

Θ(t, x − y)u0(y)dy = E[u0(x − B(t))],

comme il s'agissait de l'espérance mathématique de u0(·) calculée
par un mouvement brownien qui part de x au temps t et va dans la
direction inverse du temps jusqu'au temps initial .
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Utilisation de l'équation stochastique

La dernière remarque suggère qu'il y a une relation entre la solution
de l'équation du type parabolique et le processus stochastique.

En e�et, Kolmogorov observe cette relation [Kolmogorov,1931]
(même avant sa propre fondation de la théorie axiomatique du
calcul des probabilités, publiée en 1933) :
aujourd'hui appelée équation de Kolmogorov inverse, qui donne la
représentation stochastique de la solution d'une équation
parabolique.

Pour dé�nir la représentation stochastique de la solution d'une
équation parabolique, on dé�nit d'abord la famille de processus
stochastiques ξt,x(s) ((t, x) ∈ [0, s[×Rd) par l'équation
stochastique

ξt,x(s) = x +

∫ s

t
a(r , ξt,x(r))dr +

∫ s

t
b(r , ξt,x(r))dW (r) (10)

pour t ≤ s ≤ s.
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Représentation stochastique - théorème

Alors on a le

Théorème. Soit ψ(x) une fonction dé�nie sur Rd continue,
bornée ayant les dérivées premières et secondes continues et
bornées par rapport à x1, ..., xd . Si on pose

u(t, x) = Eψ(ξt,x(s)), (t, x) ∈ [0, s]× Rd ,

la fonction u(t, x) satisfait à l'équation

∂

∂t
u(t, x) +

d∑
i=1

ai (t, x)
∂

∂xi
u(t, x)+

+
d∑

i ,j ,k=1

bik(t, x)bjk(t, x)
∂2

∂xi∂xj
u(t, x) = 0, (11)

et à la condition �nale limt→s − u(t, x) = ψ(x).

Pour la démonstration, voir par exemple
[Guikhman-Skorokhod,1977/1980].
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Représentation stochastique pour la di�usion tendant vers 0

La méthode de la représentation stochastique nous permet de faire
tendre le coe�cient de di�usion vers 0. En e�et, l'équation

∂

∂t
u[ε](t, x) +

d∑
i=1

ai (x)
∂

∂xi
u[ε](t, x)+

+ ε

d∑
i ,j ,k=1

bik(x)bjk(x)
∂2

∂xi∂xj
u[ε](t, x) = 0 (12)

correspond à l'équation stochastique

ξ
[ε]
t,x(s) = x +

∫ s

t
a(ξ

[ε]
t,x(r))dr + ε

∫ s

t
b(ξ

[ε]
t,x(r))dW (r). (13)

Dans (13) on peut faire tendre ε vers 0, de sorte que u[ε](t, x) tend
vers la solution de l'équation sans di�usion quand ε tend vers 0.
Toutefois les résultats sont exprimés dans le langage de la théorie
des probabilités ([Freidlin-Wentzell,2012]).
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Lorsque le coe�cient de di�usion tend vers 0

Nous nous intéressons particulièrement au comportement de la
solution de l'équation de transport-di�usion (équation du type
parabolique)

∂tu + v · ∇u = κ∆u + f

lorsque le coe�cient de di�usion κ tend vers 0,

car la convergence de la solution de l'équation de
transport-di�usion vers la solution de l'équation de transport

∂tu + v · ∇u = +f

est l'exigence du fait que l'équation de transport-di�usion
représente le phénomène de transport et di�usion.
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dans l'espace de Sobolev lorsque le coe�cient κ tend vers 0

L'équation du type parabolique dans un domaine borné D de Rd est
souvent étudiée dans le cadre des espaces de Sobolev et pour cela
on commence généralement par multiplier scalairement l'équation

∂tu(t, x) + v(t, x) · ∇u(t, x)− κ∆u(t, x) = f (t, x)

(avec la condition u = 0 sur ∂D) par u(t, x) elle-même, ce qui nous
donne l'inégalité

1
2
d

dt
∥u(t, ·)∥2L2(D) +

κ

2
∥∇u(t, ·)∥2L2(D) ≤

≤
∥v(t, ·)∥2L∞(D)

κ
∥u(t, ·)∥2L2(D) +

C 2
p

κ
∥f (t, ·)∥2L2(D)

(Cp étant le coe�cient de l'inégalité de Poincaré).

Mais il est clair que cette inégalité perd de plus en plus son
e�cacité lorsque κ tend vers 0.
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Par la convergence très faible

Certes, dans cette orientation de l'esprit, il y a aussi quelque
possibilité :
Si on formule une solution généralisée très faible par∫ ∞

0

∫
Ω
u[κ][∂tφ+∇ · (φv) + κ∆φ]dxdt =

= −
∫ ∞

0

∫
Ω
f φdxdt −

∫
Ω
u0φ(0, x)dx ,

on peut faire tendre κ vers 0 (c-à-d κ∆φ→ 0), ce qui donne une
possibilité de convergence de u[κ] sans ses dérivées.

Mais ici f ne doit pas dépendre de u

et il est di�cile d'en déduire une convergence dans une topologie
plus forte [on aura besoin de convergence dans une topologie plus
forte, si on veut considérer les équations non-linéaires].
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Une remarque simple

Terminons cette première partie par une remarque sur un cas très
simple de convergence de la solution de l'équation de
transport-di�usion vers celle de l'équation de transport.

Supposons que la fonction v = v(t) dépend seulement de t
et considérons l'équation

∂tu(t, x) + v(t) · ∇u(t, x) = κ∆u(t, x) + f (t, x , u(t, x)). (∗)
Introduisons le changement de variables

ξ = x −
∫ t

0

v(s)ds.

Alors on a

∂tu(t, x) = ∂tu(t, x(t, x)) =

=
d

dt
u(t, x(t, ξ))−

d∑
i=1

(∂xiu(t, x))∂txi (t, ξ) =

= ∂tu(t, ξ)− v(t, ξ) · ∇xu(t, x(t, ξ)).
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Une remarque simple [suite]

Et, comme ∇xu(t, x) = ∇ξu(t, ξ), ∆xu(t, x) = ∆ξu(t, ξ),
l'équation (∗) se réduit à l'équation de la chaleur

∂tu(t, ξ) = κ∆u(t, ξ) + f (t, ξ, u(t, ξ)). (∗∗)

La solution u(t, ξ) est donnée par (5), qui, si f dépend de u,
devient une équation intégrale, et on voit aisément que, lorsque κ
tend vers 0, la solution de l'équation (∗∗) devient la solution
u[0](t, ξ) de l'équation intégrale (si f dépend de u)

u[0](t, ξ) = u0(ξ) +

∫ t

0

f (s, ξ, u[0](s, ξ))ds.

En revenant aux coordonnées (t, x), on voit que cette solution est
la solution de l'équation de transport

∂tu(t, x) + v(t) · ∇u(t, x) = f (t, x , u(t, x)).
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Conclusion de la Première Partie

Certes, si dans l'équation (∗) la fonction v(t, x) dépend de x ∈ Rd ,
le raisonnement de cette remarque simple ne marche pas.

Mais, si on réussit à construire des approximations dans lesquelles
on peut obtenir un comportement similaire et si ces approximations
convergent vers la solution de l'équation, on peut espérer d'obtenir
une bonne caractérisation du comportement de la solution de
l'équation de transport-di�usion dans le cas où le coe�cient de
di�usion tend vers 0.

Pour cela on doit utiliser les propriétés de la solution fondamentale
de l'équation de la chaleur et tenir dans l'esprit l'idée de la méthode
des caractéristiques pour la résolution de l'équation de transport.
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Deuxième Partie
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Méthode

Nous proposons la méthode suivante :

• Construire les solutions approchées u[κ,n] pour l'équation
de transport-di�usion

∂tu + v · ∇u = κ∆u + f ,

en traduisant sur chaque pas de la discrétisation du temps

κ∆u par la solution fondamentale de l'équation de la chaleur,

v · ∇u par le déplacement le long de la caractéristique.

• Construire aussi les solutions approchées u[0,n] pour
l'équation de transport

∂tu + v · ∇u = f .

• Estimer la di�érence

u[κ,n](t, x)− u[0,n](t, x).

• Passer à la limite

u[κ,n] → u[κ], u[0,n] → u[0].
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Méthode [suite-1]

Dé�nissons d'abord la famille de caractéristiques.

Pour chaque (t∗, x∗) ∈ R+ × Ω, Ω ⊂ Rd , on dé�nit la fonction

γ(t) = γ(t∗, x∗; t)

par l'équation intégrale

γ(t∗, x∗; t) = x∗ +

∫ t

t∗
v(s, γ(t∗, x∗; s))ds. (14)

NOTE Ici on suppose une certaine régularité de v(t, x) de sorte
que l'équation admet la solution unique.

Si Ω ̸= Rd , alors la caractéristique γ(t∗, x∗; t) peut terminer sur la
frontière ∂Ω.
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Méthode [suite-2]

Maintenant introduisons la discrétisation du temps.

Il nous convient d'utiliser la famille de discrétisations du temps t
suivante :

0 = t
[n]
0 < t

[n]
1 < · · · < t

[n]
k−1 < t

[n]
k < · · · , t

[n]
k = kδn, (15)

où
δn = 2−n, n = 1, 2, · · · . (16)

Introduisons aussi la notation

γ
[n]
k,−(x) = γ(t

[n]
k , x ; t

[n]
k−1).
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Méthode [suite-3]

Nous utilisons la solution fondamentale de l'équation de la
chaleur pour décrire la di�usion dans les solutions approchées.

C'est-à-dire, pour chaque κ > 0 et pour chaque n, nous dé�nissons

Θ
[κ]
n (x) =

1

(4πδnκ)d/2
exp

(
− |x |2

4δnκ

)
, x ∈ Rd . (17)

C'est la solution fondamentale de l'équation de la chaleur
∂tu = κ∆u

au temps t = δn.
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Méthode [suite-4]

Dé�nition des solutions approchées u[κ,n](t, x) pour l'équation
de transport-di�usion

∂tu + v · ∇u = κ∆u + f dans Rd .

On dé�nit
u[κ,n](t0, x) = u0(x), (18)

u[κ,n](t
[n]
k , x) =

∫
Rd

Θ
[κ]
n (y)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)−y)dy+

+δnf (t
[n]
k−1, γ

[n]
k,−(x), u

[κ,n](t
[n]
k−1, γ

[n]
k,−(x))), k = 1, 2, · · · , (19)

u[κ,n](t, x) =
t
[n]
k − t

δn
u[κ,n](t

[n]
k−1, x) +

t − t
[n]
k−1

δn
u[κ,n](t

[n]
k , x)

pour t
[n]
k−1 ≤ t ≤ t

[n]
k . (20)
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Méthode [suite-5]

Le terme

∫
Rd

Θn(y)u
[κ,n](t

[n]
k−1, γ

[n]
k,−(x)− y)dy signi�e que

la di�usion et le transport contribuent à la détermination de la
valeur de u[κ,n] au point x à l'instant t [n]k comme la solution de

l'équation de la chaleur avec la donnée initiale u[κ,n](t
[n]
k−1, ·) avec le

déplacement de γ[n]k,−(x) à x .
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Méthode [suite-6]

Si nous considérons l'équation de transport-di�usion de type
conservation de la masse

∂tu +∇ · (vu) = κ∆u + f ,

alors le terme intégrale de la dé�nition (19) doit être remplacé par∫
Rd

Θ
[κ]
n (y)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x − y))J

[n]
k (x − y)dy ,

où

J
[n]
k (x) = detA, A = (

∂(γ
[n]
k,−(x))j

∂xi
)i ,j=1,··· ,d .

De la dé�nition de J
[n]
k (x) et de γ(t [n]k , x ; s) il résultera que

J
[n]
k (x) = exp

(
−
∫ t

[n]
k

t
[n]
k−1

∇ξ · v(s, ξ)
∣∣
ξ=γ(t

[n]
k ,x ;s)

ds
)
.
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Méthode [suite-7]

Comme nous devrons estimer la di�érence entre u[κ,n](t, x) et
l'approximation de la solution de l'équation de transport, nous
avons besoin de dé�nir les solutions approchées u[0,n](t, x) pour
l'équation de transport ∂tu + v · ∇u = f :

On dé�nit
u[0,n](0, x) = u0(x), (21)

u[0,n](t
[n]
k , x) = u[0,n](t

[n]
k−1, γ

[n]
k,−(x))+

+ δnf (t
[n]
k−1, γ

[n]
k,−(x), u

[0,n](t
[n]
k−1, γ

[n]
k,−(x))), k = 1, 2, · · · , (22)

u[0,n](t, x) =
t
[n]
k − t

δn
u[0,n](t

[n]
k−1, x)+

t − t
[n]
k−1

δn
u[0,n](t

[n]
k , x)

pour t
[n]
k−1 ≤ t ≤ t

[n]
k . (23)

La convergence de u
[0,n]
i (t, x) vers la solution u

[0]
i (t, x) de

l'équation de transport se démontre sans di�culté.
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Méthode [suite-8]

Propriétés de la fonction Θ[κ](t, x) =
1

(4πtκ)d/2
exp

(
− |x |2

4tκ

)
•

∫
Rd

Θ[κ](t, x − y)Θ[κ](s, y)dy = Θ[κ](t + s, x) ∀s, t > 0,

•
∫
Rd

Θ[κ](t, x)dx = 1,

•
∫
Rd

Θ[κ](t, x)xidx = 0,

•
∫
Rd

Θ[κ](t, x)|x |dx = Cd

√
tκ, Cd : une constante,

•
∫
Rd

Θ[κ](t, x)xixjdx = 2δij tκ, δij = 1 si i = j , = 0 si i ̸= j .
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Résultat I - Convergence de u[κ,n] vers u[κ]

Résultat I

Soit q ∈ Z, q ≥ 2. Si

Dα
x v(t, x) ∈ Cb,loc(R+;Cb(Rd)) |α| ≤ q + 1, (24)

f (t, x , u)

1+ |u|
∈ Cb,loc(R+;Cb(Rd

+ × R)), (25)

Dα
x ,uf (t, x , u) ∈ Cb,loc(R+;Cb(Rd×R)) 1 ≤ |α| ≤ q+1, (26)

Dα
x u0(x) ∈ Cb(Rd) |α| ≤ q + 1, (27)

alors pour tout τ > 0, les fonctions u[κ,n] dé�nies par (18)�(20)
avec leurs dérivées en x ∈ Rd d'ordre ≤ q et la dérivée première en
t convergent uniformément sur [0, τ ]× Rd vers la solution u[κ] du
problème de Cauchy

∂tu
[κ] + v · ∇u[κ] = κ∆u[κ] + f , u[κ](0, x) = u0(x).
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Résultat I - Convergence de u[κ,n] vers u[κ] [suite-1]

Le résultat 1 se démontre par

• Estimation de
sup
x∈Rd

|Dα
x u

[κ,n](t, x)|,

• Convergence uniforme de Dα
x u

[κ,n](t, x) sur [0, τ ]× Rd qui
s'obtient par l'estimation de

sup
x∈Rd

|Dα
x u

[κ,n](t, x)− Dα
x u

[κ,n+1](t, x)|,

• Passage à la limite dans l'approximation de l'équation.

(Le résultat I est essentiellement obtenu dans
[Taleb-Selvaduray-Hisao,2020], [Smaali-Hisao,2021].)
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Résultat I - Convergence de u[κ,n] vers u[κ] [suite-2]

Estimation

On obtient l'inégalité

sup
x∈Rd

|Dα
x u

[κ,n](t, x)| ≤ Cτ , 0 ≤ t ≤ τ, Cτ : indépendante de n,

à partir de

sup
x∈Rd

|Dα
x u

[κ,n](t
[n]
k , x)| ≤ (1+ Cδn) sup

x∈Rd

|Dα
x u

[κ,n](t
[n]
k−1, x)|+ Cδn.

Ici il est essentiel que le premier coe�cient soit (1+ Cδn), car

(1+ Cδn)
1

δn → eC pour n → ∞.

Ni (1+ Cδn + ε) ni (1+ Cδ1−ε
n ) ne donne pas d'estimation

souhaitée.
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Résultat I - Convergence de u[κ,n] vers u[κ] [suite-3]

Convergence

Comme
t
[n]
k = t

[n+1]
2k , Θ

[κ]
n+1 ∗Θ

[κ]
n+1 = Θ

[κ]
n ,

en appliquant deux fois la dé�nition (19) à u[κ,n+1](t
[n+1]
2k , x), ceci

peut être exprimé en fonction de u[κ,n+1](t
[n+1]
2k−2 , x).

Ainsi la di�érence Dα
x u

[κ,n](t
[n]
k , x)−Dα

x u
[κ,n+1](t

[n+1]
2k , x) peut être

estimée par l'estimation en fonction de la di�érence
Dα
x u

[κ,n](t
[n]
k−1, x)− Dα

x u
[κ,n+1](t

[n+1]
2k−2 , x) et on peut obtenir une

inégalité de type

sup
x∈Rd

|Dα
x u

[κ,n](t
[n]
k , x)− Dα

x u
[κ,n+1](t

[n+1]
2k , x)| ≤

≤ (1+Cδn) sup
x∈Rd

|Dα
x u

[κ,n](t
[n]
k−1, x)−Dα

x u
[κ,n+1](t

[n+1]
2k−2 , x)|+δ

1/2
n Cδn,

d'où, compte tenu de
∑∞

n=1 δ
1/2
n <∞, on obtiendra la convergence

de Dα
x u

[κ,n].
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Résultat I - Convergence de u[κ,n] vers u[κ] [suite-4]

Passage à la limite

Le point crucial du �passage à la limite� est le lemma suivant.

Lemme

On a

u[κ,n](t
[n]
k , x)− u[κ,n](t

[n]
k−1, x)

δn
= −v(t

[n]
k , x) · ∇u[κ,n](t

[n]
k−1, x)+

+κ∆u[κ,n](t
[n]
k−1, x) + f (t

[n]
k−1, x , u

[κ,n](t
[n]
k−1, x)) + R (28)

avec
|R| ≤ (δ2n + δ

1/2
n )C0, (29)

où C0 est une constante indépendante de n.

Ce lemme s'obtient par l'application de la formule de Taylor.
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Résultat II - Convergence de u[κ] vers u[0]

Résultat II

On suppose que v et f véri�ent les mêmes conditions que celles du
résultat I. Alors, quel que soit τ > 0, on a

sup
(t,x)∈[0,τ ]×Rd

|u[κ](t, x)− u[0](t, x)| ≤ K0,τκ, (30)

sup
(t,x)∈[0,τ ]×Rd , 1≤|α|≤q−1}

∣∣∣Dα
x u

[κ](t, x)− Dα
x u

[0](t, x)
∣∣∣ ≤ K1,τκ,

(31)

sup
(t,x)∈[0,τ ]×Rd

∣∣∣ ∂
∂t

u[κ](t, x)− ∂

∂t
u[0](t, x)

∣∣∣ ≤ K2,τκ, (32)

où K0,τ , K1,τ , K2,τ sont des constantes qui ne dépendent pas de κ.

(Le résultat II est essentiellement obtenu dans [Ait
Mahiout-Hisao,2023], [Hisao-Ait Mahiout,2023.)

Hisao Fujita Yashima New research orientation for partial di�erential equations of parabolic type Nouvelle orientation de recherche pour les équations aux dérivées partielles du type parabolique



Résultat II - Convergence de u[κ] vers u[0] [suite-1]

Le point crucial de la démonstration du résultat II est

l'estimation de la di�érence entre u[κ,n] et u[0,n].

Considérons d'abord la di�érence u[κ,n](t
[n]
k , x)− u[0,n](t

[n]
k , x).

On pose

u[κ,n](t
[n]
k , x)− u[0,n](t

[n]
k , x) = D1 + D2 + D3,

où

D1 =

∫
Rd

Θ
[κ]
n (y)

[
u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)−y)−u[κ,n](t

[n]
k−1, γ

[n]
k,−(x))

]
dy ,

D2 = u[κ,n](t
[n]
k−1, γ

[n]
k,−(x))−u[0,n](t

[n]
k−1, γ

[n]
k,−(x)),

D3 = δn
[
f (t

[n]
k−1, x , u

[κ,n](t
[n]
k−1, x))− f (t

[n]
k−1, x , u

[0,n](t
[n]
k−1, x))

]
.
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Résultat II - Convergence de u[κ] vers u[0] [suite-2]

Pour estimer |D1|, on va utiliser les relations∫
Rd

Θ
[κ]
n (y)yjdy = 0,

∫
Rd

Θ
[κ]
n (y)y2j dy = 2κδn,

pour j = 1, · · · , d .

[Ici intervient le facteur κ.]

D'après la formule de Taylor on a

u[κ,n](t
[n]
k−1, γ

[n]
k,−(x)− y)− u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)) =

= −y · ∇ξu
[κ,n](t

[n]
k−1, ξ)

∣∣∣
ξ=γ

[n]
k,−(x)

+

+

∫ 1

0

d∑
i ,j=1

yiyj
∂2u[κ,n](t

[n]
k−1, ξ)

∂ξi∂ξj

∣∣∣
ξ=γ

[n]
k,−(x)−sy

(1− s)ds.
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Résultat II - Convergence de u[κ] vers u[0] [suite-3]

Compte tenu aussi de la relation |yiyj | ≤ 1
2
(y2i + y2j ), on en déduit

que

−
∫
Rd

Θ
[κ]
n (y)y · ∇ξu

[κ,n](t
[n]
k−1, ξ)

∣∣∣
ξ=γ

[n]
k,−(x)

dy = 0,

∣∣∣ ∫
Rd

Θ
[κ]
n (y)

∫ 1

0

d∑
i ,j=1

yiyj
∂2u[κ,n](t

[n]
k−1, ξ)

∂ξi∂ξj

∣∣∣
ξ=γ

[n]
k,−(x)−sy

(1− s)dsdy
∣∣∣ ≤

≤ δnκ

d∑
i ,j=1

sup
ξ∈Rd

∣∣∣∂2u[κ,n](t [n]k−1, ξ)

∂ξi∂ξj

∣∣∣.
Par conséquent, compte tenu de l'estimation de u[κ,n] (comme dans
le résultat I), on obtient

|D1| ≤ δnκCτ . (33)

[Notons que |D1| est majoré par un nombre proportionnel à κ.]
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Résultat II - Convergence de u[κ] vers u[0] [suite-4]

D'autre part, si on pose

Ak = sup
x∈Rd

|u[κ,n](t [n]k , x)− u[0,n](t
[n]
k , x)|,

on obtient (avec une constante C )

|D2| ≤ Ak−1, |D3| ≤ δnC Ak−1.

On a donc

Ak ≤ sup
x∈Rd

(|D1|+ |D2|+ |D3|) ≤ (1+ δnC )Ak−1 + δnκΛ2(τ+).

Comme u[κ,n](t
[n]
0 , x) = u0(x) = u[0,n](t

[n]
0 , x) et donc A0 = 0, on

en déduit que

Ak ≤ δnκΛ2(τ+)
∑k

j=1(1+ δnC )k−j ,

d'où

sup
x∈Rd

|u[κ,n](t, x)−u[0,n](t, x)| ≤ κΛ2(τ+)
1
C
eC τ pour 0 ≤ t ≤ τ.
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Résultat II - Convergence de u[κ] vers u[0] [suite-5]

Comme u[κ,n](t, x) et u[0,n](t, x) convergent uniformément vers
u[κ](t, x) et vers u[0](t, x), on en déduit l'inégalite (30).

Pour la di�érence

Dα
x u

[κ,n](t
[n]
k , x)− Dα

x u
[0,n](t

[n]
k , x),

même si les formules sont beaucoup plus longues, on peut procéder
avec la même idée et parvenir à l'inégalité (31).

En�n l'inégalité (32) résulte de l'équation de transport-di�usion que
u[κ,n] véri�e et de l'inégalité (31).
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Résultat III - cas du demi-espace

i) Cas de la condition de Dirichlet homogène :

Résultat III-i

Pour v , f et u0 on suppose les conditions (24)�(27) (sur Rd
+) avec

q = 2. On suppose en outre

f (t, x ′, 0, 0) = 0, vd(t, x
′, 0) = 0, u0(x

′, 0) = 0 ∀ x ′ ∈ Rd−1.

Dé�nissons les fonctions ũ[κ,n](t, x)

ũ[κ,n](t, x) =

∫
Rd

Θn(y)Λ(u
[κ,n](t, x ′ − y ′, ·))(xd − yd)dy , (34)

où Λ(·) est l'opérateur de prolongement impair de R+ sur R.
Alors les fonctions ũ[κ,n](t, x) et leurs dérivées premières en x
convergent uniformément sur [0, τ ]× {xd > 0} pour tout τ > 0, et
leurs dérivées secondes en x convergent ponctuellement sur
[0,∞[×Rd

+. La fonction limite véri�e l'équation (ponctuellement en
x et au sens généralisé en t) sur Rd

+ avec la condition de Dirichlet
homogène.
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Résultat III - cas du demi-espace [suite-1]

Le résultat III-i est obtenu essentiellement dans
[Aouaouda-Ayadi-Hisao,2022], [Gherdaoui-Taleb-Selvaduray,2023].

Le résultat III-i s'obtient par un raisonnement analogue au résultat
I, mais on a besoin aussi de

• Utilisation du prolongement impair,

• Estimation de l'e�et de la condition aux limites.

L'opérateur de prolongement impair Λ(·) de R+ sur R est dé�ni
pour les fonctions w(·) dé�nies sur r > 0 comme suit :

Λ(w(·))(r) =


w(r), si r > 0
0, si r = 0
−w(−r), si r < 0

.
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Résultat III - cas du demi-espace [suite-2]

On procède, en prolongeant les données sur Rd par

U0(x) = Λ(u0(x
′, ·))(xd), x = (x ′, xd) ∈ Rd , (35)

V ′(t, x ′, xd) = V ′(t, x ′,−xd) = v ′(t, x ′, xd),

x ′ ∈ Rd−1, xd ≥ 0, t ≥ 0, (36)

Vd(t, x
′, xd) = −Vd(t, x

′,−xd) = vd(t, x
′, xd),

x ′ ∈ Rd−1, xd ≥ 0, t ≥ 0, (37)

F (t, x ′, xd ,U) =


f (t, x ′, xd ,U), si xd > 0
0, si xd = 0
−f (t, x ′,−xd ,−U), si xd < 0

,

t ≥ 0, x ∈ Rd , U ∈ R. (38)

On pose aussi

V (t, x) = (V ′(t, x),Vd(t, x)) ∈ Rd .
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Résultat III - cas du demi-espace [suite-3]

Alors on peut considérer le problème dans l'espace entier Rd

∂tU(t, x)+V (t, x)·∇U(t, x) = κ∆U(t, x)+F (t, x ,U(t, x))

dans ]0,∞[×Rd , (39)

avec la condition initiale

U(0, x) = U0(x) dans Rd . (40)

Donc on peut construire les solutions approchées U [n](t, x) d'une
manière analogue au résultat I et procéder de manière analogue.

La restriction à {xd > 0} de la solution U(t, x) du problème
(39)�(40) sera la solution du problème original. La condition aux
limites �u[κ](t, x ′, 0) = 0 sur {xd = 0}� sera véri�ée par le fait que
U(t, x) est impair par rapport à xd .
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Résultat III - cas du demi-espace [suite-4]

Deuxièmement on a besoin de l'estimation particulière de l'e�et
de la condition aux limites.

En e�et, même si aux solutions approchées U [n](t, x) on peut
appliquer, en principe, la méthode utilisée pour le théorème I,
∂2xdF (t, x ,U

[n](t, x)) et ∂2xdU0(x) ne sont pas continues sur
{xd = 0}, ce qui exige des estimations particulières des solutions
approchées U [n](t, x).

Comme la dérivée de la discontinuité d'une fonction est la δ de
Dirac multipliée par l'amplitude du saut, pour estimer la dérivée
troisième de U [n](t, x) il faut estimer la propagation des valeurs
données sur l'hyperplan {xd = 0} dans l'espace Rd .
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Résultat III - cas du demi-espace [suite-5]

ii) Cas de la condition de Neumann homogène :

Résultat III-ii

Pour v , f et u0 on suppose les conditions (24)�(27) (sur Rd
+) avec

q = 2. On suppose en outre

vd(t, x
′, 0) = 0, ∂xd vj(t, x

′, xd)
∣∣
xd=0

= 0, j = 1, · · · , d − 1,

∂xd f (t, x
′, xd , u)

∣∣
xd=0

= 0, ∂xdu0(x
′, xd)

∣∣
xd=0

= 0 ∀x ′ ∈ Rd−1.

Alors les solutions approchées u[κ,n](t, x) dé�nies d'une manière
analogue aux cas précédents et leurs dérivées premières et secondes
en x convergent uniformément sur [0, τ ]× {xd > 0} pour tout
τ > 0. La fonction limite véri�e l'équation (ponctuellement en x et
au sens généralisé en t) sur Rd

+ avec la condition de Neumann
homogène.

Le résultat III-ii est essentiellement obtenu dans
[Gherdaoui-Selvaduray-Hisao,2024].
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Résultat III - cas du demi-espace [suite-6]

Pour le résultat III-ii on utilise le prolongement pair de Rd
+ sur

l'espace entier Rd .

Plus précisément, on pose

U0(x) = Λ0(u0(x
′, ·))(xd), x = (x ′, xd) ∈ Rd ,

Vj(t, x) = Λ0(vj(t, x
′, ·))(xd), t ≥ 0, x ∈ Rd , j = 1, · · · , d−1,

Vd(t, x) = Λ1(vd(t, x
′, ·))(xd), t ≥ 0, x ∈ Rd ,

V (t, x) = (V ′(t, x),Vd(t, x)), t ≥ 0, x ∈ Rd ,

F (t, x ,U) = Λ0(f (t, x
′, ·,U))(xd), t ≥ 0, x ∈ Rd , U ∈ R,

où Λ0 est l'opérateur de prolongement pair et Λ1 est l'opérateur de
prolongement impair.
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Résultat III - cas du demi-espace [suite-7]

Et on dé�nit les solutions approchées U [n](t, x), n = 1, 2, · · · , par

U [n](t
[n]
0 , x) = U0(x), x ∈ Rd ,

U [n](t
[n]
k , x) =

∫
Rd

Θn(y)U
[n](t

[n]
k−1, x−δnV (t

[n]
k , x)−y)dy+

+δnF (t
[n]
k−1, x ,U

[n](t
[n]
k−1, x)), x ∈ Rd , k = 1, 2, · · · ,

U [n](t, x) =
t
[n]
k − t

δn
U [n](t

[n]
k−1, x)+

t − t
[n]
k−1

δn
U [n](t

[n]
k , x)

pour t
[n]
k−1 ≤ t ≤ t

[n]
k , x ∈ Rd .

Pour ces solutions approchées U [n](t, x) on peut utiliser le
raisonnement de la démonstration du théorème I.
Il n'est pas nécessaire de faire d'estimation particulière de l'e�et de
la condition aux limites.
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Résultat III - cas du demi-espace [suite-8]

iii) Convergence pour κ→ 0 avec la condition de Neumann
homogène :

Résultat III-iii

Pour v , f et u0 on suppose les conditions (24)�(27) (sur Rd
+) avec

q = 2. On suppose en outre

vd(t, x
′, 0) = 0, ∂xd vj(t, x

′, xd)
∣∣
xd=0

= 0, j = 1, · · · , d − 1,

∂xd f (t, x
′, xd , u)

∣∣
xd=0

= 0, ∂xdu0(x
′, xd)

∣∣
xd=0

= 0 ∀x ′ ∈ Rd−1.

Alors pour la solution u[κ](t, x) de l'équation avec di�usion et avec
la condition de Neumann homogène et la solution u[0](t, x) de
l'équation sans di�usion et avec la condition de Neumann
homogène quel que soit τ > 0, il existe une constante C 0 = C 0(τ),
indépendantes de κ et telle que

sup
(t,x)∈[0,τ ]×Rd

+

|u[0](t, x)− u[κ](t, x)| ≤ C 0κ,
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Résultat III - cas du demi-espace [suite-9]

Résultat III-iii [suite]

sup
(t,x)∈[0,τ ]×Rd

+

|∂xiu
[0](t, x)− ∂xiu

[κ](t, x)| ≤ C 0κ, i = 1, · · · , d ,

sup
(t,x)∈[0,τ ]×Rd

+

|∆u[κ](t, x)| ≤ C 0.

Le résultat III-iii est essentiellement obtenu dans
[Gherdaoui,à-paraître].

IDÉE DE LA DÉMONSTRATION

De manière analogue à la démonstration du résultat III-ii , on dé�nit
le prolongement pair des fonctions données.
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Résultat III - cas du demi-espace [suite-10]

Avec les données prolongées sur Rd on dé�nit

les solutions approchées U [κ,n](t, x) pour l'équation avec
di�usion,

et les solutions approchées U [0,n](t, x) pour pour l'équation sans
di�usion.

Cela étant, en utilisant la technique de [Ait Mahiout-Hisao,2023] on
peut obtenir

sup
(t,x)∈[0,τ ]×Rd

+

|U [0](t, x)− U [κ](t, x)| ≤ C 0κ,

sup
(t,x)∈[0,τ ]×Rd

+

|∂xiU
[0](t, x)−∂xiU

[κ](t, x)| ≤ C 0κ, i = 1, · · · , d ,

sup
(t,x)∈[0,τ ]×Rd

+

|∆U [κ](t, x)| ≤ C 0.

On en déduira les inégalités analogues pour u[0](t, x) et u[κ](t, x).
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Résultat III - cas du demi-espace [suite-11]

iv) Convergence pour κ→ 0 avec la condition de Dirichlet
homogène :

Le travail est en cours.
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Résultat IV - cas d'un coe�cient de di�usion non-constant

Dans le cas où le coe�cient de di�usion κ dépend de x ∈ Rd ,
on a besoin de nouvelles techniques :

• introduction de �fonctions de position X n,h
k,y (x)� ,

• dé�nition des solutions approchées à t
[n]
k par

u[κ,n](t
[n]
k , x) =

=

∫
Rd

Θ
[1]
n (y)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)−a(x)y)dy + δnf (t

[n]
k−1, x), (41)

où a(x) =
√
κ(x) , Θ

[1]
n (x) =

1

(4πδn)
d
2

e
−|x|2
4δn ,

au lieu de (19).

Les dé�nitions (18) et (20) formellement restent identiques.
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-1]

Pour le moment nous nous limitons au cas où f ne dépend pas de
u. On a le

Résultat IV-i

Pour v et u0 on suppose les conditions (24) et (27). On suppose en
outre que

Dα
x κ(x) ∈ Cb(Rd) ∀α ∈ Nd , |α| ≤ q + 1,

Dα
x f (t, x) ∈ Cb,loc(R+;Cb(Rd)) ∀α ∈ Nd , |α| ≤ q + 1.

Alors, quel que soit τ > 0, les fonctions u[κ,n](t, x) dé�nies par
(18), (41) et (20) et leurs dérivées Dα

x u
[κ,n](t, x), |α| ≤ q,

convergent pour n → ∞ uniformément sur [0, τ ]× Rd

respectivement vers une fonction u[κ](t, x) et vers ses dérivées
Dα
x u

[κ](t, x).
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-2]

Résultat IV-i [suite]

En outre la dérivée droite par rapport à t de u[κ,n](t, x)

(∂tu
[κ,n])+(t, x) =

u[κ,n](t
[n]
k , x)− u[κ,n](t

[n]
k−1, x)

δn

pour t
[n]
k−1 ≤ t < t

[n]
k , k = 1, 2, · · · ,

convergent pour n → ∞ uniformément dans [0, τ ]× Rd vers
∂tu

[κ](t, x) et la fonction limite u[κ](t, x) satisfait ponctuellement à
l'équation

∂tu
[κ](t, x) + v(t, x) · ∇u[κ](t, x) = κ(x)∆u[κ](t, x) + f (t, x)

dans R+ × Rd et à la condition initiale u[κ](0, x) = u0(x) dans Rd .

Hisao Fujita Yashima New research orientation for partial di�erential equations of parabolic type Nouvelle orientation de recherche pour les équations aux dérivées partielles du type parabolique



Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-3]

Le résultat IV-i est essentiellement obtenu dans
[Nemdili-Hisao,2024].

Rappelons que l'expression∫
Rd

Θ
[1]
n (y)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)− a(x)y)dy

utilisée dans la dé�nition de u[κ,n](t
[n]
k , x) est équivalente à∫

Rd

1

(4πδnκ(x))d/2
exp(− |y |2

4δnκ(x)
)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)− y)dy ,

ce qui résulte immédiatement du changement de variables
y ′ = a(x)y =

√
κ(x)y .
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-4]

Fonctions de position X n,h
k,y (x)

On la dé�nit par
X n,0
k,y (x) = x , (42)

X n,h
k,y (x) = γ

[n]
k−h+1,−(X

n,h−1
k,y (x))− a(X n,h−1

k,y (x))yh, h = 1, · · · , k
(43)

(ici h dans la notation yh est un simple indice et ne désigne pas la
puissance).

Pourquoi il nous faut utiliser la fonctions de position X n,h
k,y (x) ?

Si on faisait l'estimation de ∂xiu
[κ,n](t

[n]
k , x) sur l'expression de

u[κ,n](t
[n]
k , x) donnée sur chaque pas �de t

[n]
k−1 à t

[n]
k �, alors on

devrait estimer

∂

∂xi

∫
Rd

Θ
[1]
n (y)u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)− a(x)y)dy =

Hisao Fujita Yashima New research orientation for partial di�erential equations of parabolic type Nouvelle orientation de recherche pour les équations aux dérivées partielles du type parabolique



Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-5]

=

∫
Rd

Θ
[1]
n (y)

∂

∂xi
u[κ,n](t

[n]
k−1, γ

[n]
k,−(x)− a(x)y)dy =

=

∫
Rd

Θ
[1]
n (y)

d∑
j=1

∂

∂ξj
u[κ,n](t

[n]
k−1, ξ)

∣∣∣
ξ=γ

[n]
k,−(x)−a(x)y

×

×
(
∂xiγ

[n]
k,−(x)− ∂xi a(x)yj)dy .

Pour estimer le terme Θ
[1]
n (y)∂ξju

[κ,n]∂xi a(x)yj nous serions
contraints à utiliser ∫

Rd

Θ
[1]
n (y)|yj |dy = C

√
δn,

mais 2n
√
δn = 2n

√
2−n =

√
2n → ∞ pour n → ∞. Donc

l'estimation de ∂xiu
[n](t

[n]
k , x) sur chaque pas �de t

[n]
k−1 à t

[n]
k � ne

nous donne pas d'estimation utile.
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-6]

Par contre, si nous utilisons la fonctions de position X n,h
k,y (x), alors

u[κ,n](t
[n]
k , x) peut être écrite sous la forme

u[κ,n](t
[n]
k , x) =

∫
(Rd )k

(
k∏

h=1

Θn(y
h))u0(X

n,k
k,y (x))dy

1 · · · dyk+

+δn

k−1∑
h=1

∫
(Rd )h

(
h∏

h′=1

Θn(y
h′))f (t

[n]
k−h−1,X

n,h
k,y (x))dy

1 · · · dyh+

+δnf (t
[n]
k−1, x).

Donc l'estimation de sa dérivée se réduit à l'estimation de
u0(X

n,k
k,y (x)) et de f (t

[n]
k−h−1,X

n,h
k,y (x)), qui peuvent être estimés sur

la base de l'estimation de X n,h
k,y (x).
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-7]

Nous avons besoin de l'estimation des �fonctions de positions�
X n,h
k,y (x). On a le lemme suivant.

Lemme 1

Soit X n,h
k,y (x) la fonction dé�nie par (42)�(43). Alors sous les

conditions du résultat IV-i il existe une fonction continue et
croissante Φ(q,m)(s) = Φ(τ ;q,m)(s) indépendante de n, k et h et

telle que, si t [n]k ≤ τ , on ait

sup
x∈Rd

∫
(Rd )h

( h∏
h′=1

Θn(y
h′)

)( d∑
j=1

(Dα
x (X

n,h
k,y (x))j)

2
)m

dy1 · · · dyh ≤

≤ Φ(q,m)(hδn)

pour tout α = (α1, · · · , αd) ∈ Nd , |α| = q + 1.
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-8]

Nous avons besoin aussi la convergence des �fonctions de positions�
X n,h
k,y (x). On a le lemme suivant.

Lemme 2

Supposons que l'hypothèse du résultat IV-i est véri�ée. Soit
X n,h
k,y (x) la fonction dé�nie par (42)�(43). Soit X̃ n,h

k+1,y (x) la
fonction dé�nie par les relations

X̃ n,0
k+1,y (x) = x ,

X̃ n,h
k+1,y (x) =

= γ
[n]
k−h+2,−(X̃

n,h−1
k+1,y (x))− a(X̃ n,h−1

k+1,y (x))(y
2h−1 + y2h).
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-9]

suite de l'énoncé du lemme 2

Alors

1) pour chaque (τ ,m) ∈ R+ × (N\{0}) il existe une constante

K2 = K2(τ ,m) indépendante de n, k et h et telle que, si t [n]k+1 ≤ τ ,
alors on ait

sup
x∈Rd

∫
(Rd )2h

( 2h∏
h′=1

Θn+1(y
h′)

)∣∣X n+1,2h
2k+2,y (x)−X̃ n,h

k+1,y (x)
∣∣2mdy1 · · · dy2h ≤

≤ δn+1e
K2hδn+1 .

2) pour chaque (τ ,m, q) ∈ R+ × (N\{0})× (N\{0}) il existe une
fonction continue et croissante Ψ(q,m)(s) = Ψ(τ ,q,m)(s)

indépendante de n, k et h et telle que, si t [n]k+1 ≤ τ , on ait
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-10]

suite de l'énoncé du lemme 2

sup
x∈Rd

∫
(Rd )2h

( 2h∏
h′=1

Θn(y
h′)

)
×

×
( d∑

j=1

(
Dα
x (X

n+1,2h
2k+2,y (x))j − Dα

x (X̃
n,h
k+1,y (x))j

)2)m
dy1 · · · dy2h ≤

≤ (δn+1)
1

2qΨ(q,m)(hδn+1)

pour tout α = (α1, · · · , αd) ∈ Nd , |α| = q.

NOTE La dernière inégalité peut être améliorée dans le sens que le

second membre peut avoir un facteur δ1/2n+1 au lieu de (δn+1)
1

2q .
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-11]

L'estimation de u[κ,n] se fait avec l'estimation de X n,h
k,y (x),

et la convergence de u[κ,n] se démontre à l'aide de la convergence
de X n,h

k,y (x).

Pour la démonstration de la convergence uniforme de la dérivée
droite (ou bien dérivée gauche) par rapport à t de u[κ,n](t, x), on a
utilisé la continuité uniforme sur [0, τ ]× Rd des fonctions
u[κ,n](t, x), ∂xiu

[κ,n](t, x) et ∂xj∂xiu
[κ,n](t, x).

Pour démontrer cette continuité uniforme, on a utilisé des
estimations des �fonctions de position X n,h

k,y (x)�.

Commentaire

Pour le cas où f dépend de u, le travail est en cours.
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-12]

Cas où κ = κ(t) dépend de t
Si κ(t) dépend seulement de t, alors on peut introduire le
changement de variables t → s par

s = s(t) =

∫ t

0

κ(t ′)dt ′,

de sorte que

∂su(t(s), x) = ∂tu(t, x)
dt(s)

ds
=

1
κ(t)

∂tu(t, x)

et donc, en divisant l'équation par κ(t), on a l'équation

∂su(t(s), x)+
1
κ(t)

v(t(s), x)·∇u(t(s), x) =

= ∆u(t(s), x) +
1
κ(t)

f (t(s), x , u(t(s), x)).
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-13]

De cette manière on a le résultat [Taleb-Gherdaoui,2025]

Résultat IV-ii

On suppose que κ(t) > 0 p.p. sur R+ et que

∀ε > 0 ∃δ > 0 t.q. si
∞∑
n=1

∫ bn

an

κ(t)dt ≤ δ, alors
∞∑
n=1

(bn − an) ≤ ε,

1
κ(t)

Dα
x v(t, x),

1
κ(t)

Dα
x ,uf (t, x , u)

1+ |u|
, Dα

x u0(x), bornée, |α| ≤ 3,

1
κ(t(s))

Dα
x v(t(s), x),

1
κ(t(s))

Dα
x ,uf (t(s), x , u) ∈ Λ, |α| ≤ 2,

Λ = {φ : continue, ∀τ > 0
∑∞

n=1 λτ,n(φ) <∞},
λτ,n(φ) = sup{ |φ(r1, x)− φ(r2, x)|, r1, r2 ∈ [0, τ ], x ∈ Rd , |r1 − r2| ≤ δn}.
Alors les solutions approcées u[κ,n](t, x) convergent pour n → ∞.
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Résultat IV - cas d'un coe�cient de di�usion non-constant
[suite-14]

Cas où κ = κ(t, x) dépend de t et de x

Dans ce cas, en utilisant les techniques soit du résultat IV-i soit du
résultat IV-ii , on peut obtenir le résultat suivant
([Bezia-Gherdaoui,soumis])

Résultat IV-iii

On suppose que κ(t, x), v(t, x), f (t, x) et u0(x) véri�ent les
conditions du résultat IV-i et celles du résultat IV-ii , en particulier

2κ(t, x)
supy∈Rd κ(t, y) + infy∈Rd κ(t, y)

∈ Λ.

Alors les solutions approchées u[κ,n](t, x) convergent pour n → ∞
de manière aux cas précédents.
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Perspective I - dans un domaine plus générale

Il est naturel de poser la question :

Est-ce qu'il est possible de généraliser ce qu'on a fait au cas où le
domaine est di�érent de Rd et Rd

+ ?

Supposons que la frontière de ce domaine est su�samment
régulière. Alors on peut envisager de transformer un sous-domaine
touchant la frontière en le demi-espace. Alors il faut introduire le
changement de variables, qui transforme aussi le laplacien en un
opérateur di�érentiel.

Donc on a besoin de la possibilité de traiter l'équation de
transpor-di�usion avec un opérateur elliptique qui dépend de
x. Nous pensons que c'est possible en généralisant la technique de
[Nemdili-Hisao,2024].

Puis, naturellement il faut utiliser le raisonnement de nos travaux
dans Rd

+.
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Perspective II - avec des conditions aux limites plus générales

Jusqu'à maintenant nous nous sommes limités aux cas de condition
de Dirichlet homogène ou condition de Neumann homogène sur la
frontière du demi-espace.

Si on considère par exemple la condition de Dirichlet non-homogène
sur la frontière du demi-espace et si on construit une fonction
u1(t, x) telle que la fonction ũ(t, x) = u(t, x)− u1(t, x) véri�e la
condition de Dirichlet homogène, alors on peut obtenir un résultat
analogue. Mais si on le fait d'une manière élémentaire, il faut
supposer beaucoup de régularité des données, ce qui nous semble
peu naturel. Donc nous devons chercher une généralisation avec des
conditions de régularités raisonnables.

De plus, lorsque la fonction de transport v est entrante (v · n < 0
avec la normale extérieure n), le problème n'est pas facile. Nous
avons déjà tenté ([Selvaduray-Hisao,soumis]), mais le résultat est
faible. Il nous faut éclaircir la situation.
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Perspective III - dans l'espace de Hölder

L'espace de Hölder peut être un outil adapté à notre méthode,
car il n'exige pas l'intégrabilité de la fonction considérée, en
particulier dans un domaine non borné.

Dans [Nemdili-Korichi-Hisao,2024] nous avons montré que les
solutions approchées jouissent de la régularité höldérienne C k+σ si
les données possèdent la même régularité höldérienne et elles
convergent vers la solution de l'équation dans l'espace C k+σ′

,
σ′ < σ, et la fonction limite jouisse de la régularité C k+σ.

Mais nous voulons aller plus loin : montrer que la solution jouisse
de la régularité höldérienne C k+2+σ, ce qui est le cas de la solution
de l'équation de la chaleur, comme nous l'avons évoqué dans la
première partie de ce séminaire.

Mais il nous semble que c'est assez di�cile. Mais il vaut la peine de
tenter.
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Perspective IV - calcul numérique

Comme nous construisons les solutions approchées selon le principe
du schéma explicite de la méthode de di�érences �nies, on pourrait
penser qu'il est possible de construire un schéma numérique basé
sur notre solution approchée. Nous avons déjà obtenu un �bon�
résultat numérique dans [Aouaouda-Ayadi-Hisao,2022]. Mais ce
�succès� est dû aux circonstances particulières du problème : il
s'agissait d'une modélisation de la di�usion de la vapeur qui sort de
la surface de la mer ; dans ce modèle on s'intéressait à la di�usion
de la vapeur dans la direction verticale (presque indépendamment
de la position horizontale), tandis que le transport (vent) est
supposé horizontal.

Pour avoir un schéma numérique plus général et acceptable, il faut
métriser la di�usion due au calcul numérique de telle sorte que l'on
puisse apprécier la di�usion due au problème même, en évitant que
la di�usion due au calcul numérique envahisse le résultat.
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Perspective V - système d'équations semi-linéaires

Dans [Hisao-Ait Mahiout,2023] nous avons déjà traité le cas le plus
simple de système d'équations semi-mlinéaires, ce qui toutefois ne
di�ère pas beaucoup du cas d'une équation.

Maintenant nous sommes en train d'étudier le système d'équations
du modèle de compétion de m espèces avec transport et di�usion.
Le transport est du type conservation de la masse comme
l'équation de continuité. Il faut établir une bonne estimation pour le
terme non-linéaire, mais ce n'est pas di�cile.

Une question plus intéressante sera par exemple l'équation de
Lotka-Volterra du modèle de proie-prédateur avec transport et
di�usion.

Une question encore plus intéressante serait un système où les
termes de di�usion sont inter-connectés, c'est-à-dire à l'équation de
la i-ème composante intervient la di�usion d'autres composantes
du système.
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Perspective IV - équations de la mécanique des �uides

Les équations de la mécanique des �uides sont les objets que
nous voulons le plus atteindre. En e�et, dans la mécanique des
�uides le transport et la di�usion ont leur propre sens.

Toutefois les équations de la mécanique des �uides ne sont pas
faciles à traiter, car essentiellement le transport est un connu.
Donc les outils que nous avons construits ne seront pas su�sants
pour traiter ces équations.

Peut-être on peut commencer avec les équations linéarisées ou
semi-linéariser.

Peut-être il sera utile d'étudier l'équation de Burgers comme le cas
le plus simple des équations quasi-linéaires. La comparaison avec
des propriétés connues sur l'équation de Burgers pourra nous
donner de nouvelles intuitions.

On va voir.
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